The MRS (Materials, Radiation, Structure) team gathers researchers from complementary disciplines (physicists, chemists, geochemists, crystallographers), who develop and use cutting edge experimental and methodological tools, mastering the whole experimental process from synthesis, to physical and structural measurements. We share a marked specificity for extreme conditions studies and are strongly involved into CRG instruments at the Grenoble large facilities (ESRF, ILL). The systems under study range from magnetoelectric oxides to intermetallic materials for energy, through semiconductor nanowires, cultural heritage materials and hydrothermal fluids.
The different characterization methods at the MRS team:
We use several x-ray techniques in resonance condition, when the energy of the photons is tuned to an inner energy level of an atom. A substantial increase in scattering can be observed. The resonance consists in the absorption of a photon by a core electron promoted to one unoccupied orbitals sensitive to the local structural, electronic and magnetic structure. If this photoelectron then comes back to its core state, with no energy left behind, the process is said to be “resonant elastic x-ray scattering” (REXS) and can give rise to diffraction. The resonance can also trigger collective or individual excitation among the nearby electrons and the system can instead be left with some excitations. The emitted photon has then less energy, that’s “resonant inelastic x-ray scattering” (RIXS), which gives invaluable informations about the electronic or magnetic interactions. REXS or RIXS are photon-in photon-out scattering techniques, and thus can allow very versatile sample environments, like cryostats, oven, electric and magnetic field applications. Synchrotron facilities are required for tuning the beam to the desired energy. There, the very high flux of photon allows microscopic crystal to be measured, as well as ultrathin films.
Resonant X-ray Diffraction (RXD) is a REXS technique that consists in following the intensity of the diffraction of a crystal when the energy is swept through a resonance. RXD combines x-ray diffraction and x-ray spectroscopy. With this sensitivity, the resonant reflections carry information on the long-range electronic and magnetic states. New diffraction conditions can reveal superstructures invisible by other techniques revealing hidden orders in crystalline materials at the origin of macroscopic properties, electric or magnetic. RXD unraveled and quantified charge ordering in magnetite, and orbital and magnetic ordering in manganites. We perform RXD at D2AM at the ESRF, SEXTANTS at Soleil, I16 at Diamond. We use FDMNES and Dyna for the analysis of our data.
Contact: Stéphane Grenier (contact here)
Resonant Inelastic X-ray Scattering (RIXS) consists in measuring the difference in energy and the change in direction of the emitted photon from the incident photon. The difference in energy corresponds to the energy used by all sort of excitations, charge, magnetic like magnons or for collective vibrations, like phonons. The change in direction indicates the propagation of the excitations relatively to its crystal lattice axes. Mapping the excitations offers a view on the interactions at play in the system. We used RIXS to measure magnons and charge-phonon couplings in high-Tc superconductors and crystal field excitations in multiferroics. We performed RIXS at ID32 at the ESRF and SEXTANTS at Soleil.
Contact: Laura Chaix (contact here)
Y. Joly, S. D. Matteo, and O. Bunău, Resonant X-Ray Diffraction: Basic Theoretical Principles, Eur. Phys. J. Spec. Top. 208, 21 (2012).
J. Fink, E. Schierle, E. Weschke, and J. Geck, Resonant Elastic Soft X-Ray Scattering, Rep. Prog. Phys. 76, 056502 (2013).
J. E. Lorenzo, Y. Joly, D. Mannix, and S. Grenier, Charge Order as Seen by Resonant (Elastic) X-Ray Scattering, Eur. Phys. J. Special Topics 208, 121–127 (2012).
L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Resonant Inelastic X-Ray Scattering Studies of Elementary Excitations, Rev. Mod. Phys. 83, 705 (2011).
X-ray Resonant Magnetic Scattering, Dyna project.
Dyna is a simulation and fitting program for x-ray and optical reflectivity and transmittance. Its specificity lies in the account of anomalous, resonant and magnetic resonant effects and it is used for the study of structural, magnetic and electronic stackings in ultrathin multilayers.
Dyna is a collaborative, open and free program, with collaborations at Institut Néel, Soleil synchrotron, and Sorbonne University. Visit the webpage of the projet dyna for documentation, and give it a try !
Contact: Stéphane Grenier (contact here)
Cette page est vide.
The MRS group is engaged in the elaboration of a large variety of materials including compounds with unfavorable thermodynamic stability (metastable phases or with uncommon oxidation states), that range from multi-element oxides, chalcogenides, iron-based pnictides, intermetallics and hydrides, molecular framework solids or even composites. This activity benefits from a large panel of techniques available on-site for the design of single-crystals, ceramics or nano-materials in collaboration with three technical groups at Néel (“X’Press”, “Cristaux massifs” and “ThEMA”).
solid-state reactions routes with glove-box for manipulation in water/O2-free conditions combined to thermal treatments in inert or reactive atmosphere: from vacuum to controlled gas mixtures and 1600°C maximum temperature
solution-based techniques under milder conditions including coprecipitation, polymeric and/or auto-combustion routes; colloidal chemistry
crystal growth by chemical vapor transport
vacuum induction melting for reactive metals and alloys
pressure-assisted synthesis with fondant or oxidizing agent, using two large volume presses reaching 7 GPa and 1200°C; possibility for a preliminary screening of the suitable (T,P) conditions from in-situ powder x-ray diffraction combined to Paris-Edinburgh press or in-house designed pressure cell with independent control of temperature and pressure
high-energy mechanical milling and melt spinning
hydrogenation post-treatment through solid-gas reaction, possibly combined to severe plastic deformation processes to change sorption properties
Cette page est vide.
We use several TEM based techniques to learn more about materials, and in parallel also develop these techniques to make them more quantitative. The focus lies on crystallography of particles that can’t be studied by X-rays (due to size or other difficulties) by 3D diffraction techniques, as well as studying electrical properties at nm and atomic length scales, for which we may want to electrically contact the sample.
Contact Crystallography: Holger Klein (holger.klein@neel.cnrs.fr), Chritophe Lepoittevin (christophe.lepoittevin@neel.cnrs.fr)
electrically contact the sample.
Contact Field mapping and in-situ: Martien den Hertog (martien.den-hertog@neel.cnrs.fr) https://neel.cnrs.fr/les-chercheurs-et-techniciens/martien-den-hertoghome
Many researchers of our team are involved in the scientific activity of synchrotron and neutron national equipments (Collaborative research groups) located in the European ESRF and ILL facilities. The three instruments that concern our group are :
D2AM at ESRF, dedicated to structural investigations using anomalous scattering in materials science, with two instruments : a Kappa diffractometer and a small angle scattering camera.
FAME at ESRF, dedicated to x-ray absorption experiments for structural investigation of (very) diluted systems of environmental, material and biological interest.
D1B at ILL, which is a high intensity powder diffractometer designed for in situ experiments and magnetism studies.
Position type: Stages Master-2 & Thèse
Contact: Maurin / Isabelle -
Du fait de leur propriétés de luminescence uniques et de leur grande photostabilité, les oxydes à base d’ions terres rares ont connu un développement rapide avec des applications allant de l’éclairage, l’affichage ou l’amplification optique à des domaines émergents tels que les technologies quantiques, la biodétection ou la nanomédecine. Dans le contexte de la transition énergétique, une question-clé concerne le coût et la disponibilité des terres rares dans les années à venir, qu’ils soient utilisés comme ions dopants luminescents (Yb3+, Ce3+, Nd3+) ou comme formateurs de cristaux hôtes pour ces dopants. Nos travaux visent à explorer de nouvelles compositions de cristaux hôtes pour réduire la pression sur les chaînes d’approvisionnement en utilisant des terres rares de plus faible pureté issues de l’économie circulaire ou en cherchant à les substituer par des éléments non critiques.
Position type: Stages Master-2 & Thèse
Contact: ISNARD Olivier -
Magnetic materials are of outmost importance in modern life, they are at the heart of motors, generators, actuators and detectors. The research for improved performance is driven by the need to reduce energy consumption and provide optimise material for each applications. The best materials to date for electric vehicles, windmill or greenhouse magnetic refrigerant are all containing rare-earth elements (R) which have been considered as critical material by the European community as well as the USA. The need for such elements reflects their importance for new technologies as well as the risk of using such elements mostly supplied by China. The R-M phases based on rare-earth (R) and transition metals (M) are fascinating materials from both applied and fundamental viewpoints. The R-M compounds are however complex materials and need fundamental studies to master their magnetic properties and optimize their performances.
Position type: Stages Licence & Master-1
Contact: Salvatore Miraglia -
Elaboration et caractérisation d’intermetalliques obtenus par solidification rapide
Position type: Stages Master-2 & Thèse
Contact: Christophe LEPOITTEVIN - 04 56 38 71 92 | Stéphanie KODJIKIAN - 04 76 88 74 25
La transition énergétique vers des sources d’énergie plus durables et respectueuses de l’environnement est devenu un enjeu majeur. Dans ce contexte, l’hydrogène apparaît comme une des solutions prometteuses : il est largement répandu sur Terre et a peu d’impact sur l’empreinte carbone. Toutefois l’utilisation de l’hydrogène à grande échelle nécessite de pouvoir le stocker de manière compacte, ce qui reste un des plus grands défis de la recherche actuelle. Le/la stagiaire utilisera le microscope électronique en transmission de dernière génération de l’Institut Néel pour caractériser la structure de matériaux particulièrement pertinents pour le stockage d’hydrogène.
Position type: Stages Master-2 & Thèse
Contact: Martien den Hertog - 0476881045 | Naud Cecile -
The combination of superconducting and semiconducting materials at nm length scales is an intensely studied topic as new device functionalities can be realized by combining these material combinations at such small length scales. In particular, these structures are regarded as promising building blocks for quantum computing. More specifically, the Al-Ge and Al-Si material combination has been studied in depth in our groups during the last 10 years, both for its structural aspect by using transmission electron microscopy (TEM) as well as by low temperature transport, in collaboration with researchers at the Technical University of Vienna, Austria.
Position type: Stages Master-2 & Thèse
Contact: Martien den Hertog - 0476881045
Long range electric and magnetic fields are present all around us in devices, where electric fields on atomic length scales are present in all matter. However, it remains challenging to measure the strength of these fields accurately and with high spatial resolution. Several Transmission Electron Microscopy (TEM) based techniques exist, sensitive to internal fields. TEM is of particular interest in this respect, since (i) the electron traverses the sample, and can therefore probe all fields it traverses, and (ii) due to the very high spatial resolution that can be obtained in TEM.
Position type: Stages Master-2 & Thèse
Contact: TOULEMONDE Pierre - 0476887421
In this internship we will study layered Lnn+1NinO3n+1 nickelates which become high Tc superconductors under high pressure, after a structural transition occured. The aim is to understand the close relationship between superconductivity and this crystallographic transition, then the related superconductivity mechanism. Another goal will be to stabilize this superconducting state at ambient pressure in such nickelates family.
Position type: Thèses financées
Contact: Maria DIaz-Lopez -
Are you interested in working in a large collaborative team to advance the design of next-generation energy storage materials? You will be based at the Institut Néel and the SyMMES laboratory (CEA) within the GIANT campus of Grenoble. Your role will involve characterizing and performing electrochemical measurements on new cathode materials prepared using the niche technique of Cold Sinter Processing (CSP), a technology poised to revolutionize the autonomy and safety of electric vehicles by enabling the production of new materials and devices at low energy costs.
Position type: Stages Master-2 & Thèse
Contact: Maria DIAZ-LOPEZ -
Are you interested in working in a large collaborative team to advance the design of next-generation energy storage materials? You will be based at the Institut Néel and the LEPMI laboratory within the GIANT campus of Grenoble. Your role will involve characterizing and performing electrochemical measurements on new electrolytes prepared using the niche technique of Cold Sinter Processing (CSP), a technology poised to revolutionize the autonomy and safety of electric vehicles by enabling the production of new materials and devices at low energy costs.
Position type: Thèses financées
Contact: Fabio Denis Romero - 0615674223
A fully funded PhD project at Institut Néel / Université Grenoble Alpes in France. The start date must be between October and December 2024.
The project focuses on:
Position type: Thèses financées
Contact: Holger KLEIN - +33 4 76 88 79 41
The aim of this thesis project is to solve the structures of coordination polymers using electron crystallography, and thus make a significant contribution to the search for new materials in this field. In this thesis project, we will use electron diffraction, since for this technique nanometric crystals are sufficient for solving the structures. A combination of methods and strategies from structural biology and materials science will enable us to optimize data acquisition and processing.
The thesis will comprise several stages:
Person in charge: Martien Den Hertog, Stéphane Grenier
Permanents
Students & Post-docs & CDD
Aude BAILLY
Personnel Chercheur - CNRS
aude.bailly [at] neel.cnrs.fr
Phone: 04 76 88 90 19
Office: F-412
Pierre BORDET
Personnel Chercheur - CNRS
Pierre.Bordet [at] neel.cnrs.fr
Phone: 04 76 88 74 24
Office: F-407
Nassira BOUDJADA
Personnel Chercheur - UGA
Nassira.Boudjada [at] neel.cnrs.fr
Phone: 04 76 88 74 11
Office: F-207
Pierre BOUVIER
Personnel Chercheur - CNRS
pierre.bouvier [at] neel.cnrs.fr
Phone: 04 76 88 79 90
Office: F-402
Laura CHAIX
Personnel Chercheur - CNRS
laura.chaix [at] neel.cnrs.fr
Phone: 04 76 88 11 42
Office: F-413
Claire COLIN
Personnel Chercheur - UGA
claire.colin [at] neel.cnrs.fr
Phone: 04 76 88 74 14
Office: F-410
Julio Cesar DA SILVA
Personnel Chercheur - CNRS
julio-cesar.da-silva [at] neel.cnrs.fr
Phone: 04 76 88 14 84
Office: F-210
Céline DARIE
Personnel Chercheur - G-INP
Celine.Darie [at] neel.cnrs.fr
Phone: 04 76 88 79 40
Office: F-310
Martien DEN-HERTOG
Personnel Chercheur - CNRS
martien.den-hertog [at] neel.cnrs.fr
Phone: 04 76 88 10 45
Office: F-313
Fabio DENIS-ROMERO
Personnel Chercheur - CNRS
fabio.denis-romero [at] neel.cnrs.fr
Phone: 04 76 88 78 05
Office: F-309
Patricia DERANGO
Personnel Chercheur - CNRS
patricia.derango [at] neel.cnrs.fr
Phone: 04 76 88 90 30
Office: V-115
Maria DIAZ-LOPEZ
Personnel Chercheur - CNRS
maria.diaz-lopez [at] neel.cnrs.fr
Phone: 04 56 38 71 80
Office: D-413
Eric DOORYHEE
Personnel Chercheur - CNRS
Eric.Dooryhee [at] neel.cnrs.fr
Phone: 04 76 88 90 10
Office: F-417
Stéphane GRENIER
Personnel Chercheur - CNRS
stephane.grenier [at] neel.cnrs.fr
Phone: 04 76 88 90 98
Office: F-412
Jean-Louis HAZEMANN
Personnel Chercheur - CNRS
Jean-Louis.Hazemann [at] neel.cnrs.fr
Phone: 04 76 88 74 07
Office: F-419
Jean-Louis HODEAU
Personnel Chercheur - CNRS
Jean-Louis.Hodeau [at] neel.cnrs.fr
Phone: 04 76 88 11 42
Office: F-413
Olivier ISNARD
Personnel Chercheur - UGA
Olivier.Isnard [at] neel.cnrs.fr
Phone: 04 76 88 11 46
Office: F-203A
Holger KLEIN
Personnel Chercheur - UGA
Holger.Klein [at] neel.cnrs.fr
Phone: 04 76 88 79 41
Office: F-420
Laetitia LAVERSENNE
Personnel Chercheur - CNRS
laetitia.laversenne [at] neel.cnrs.fr
Phone: 04 76 88 90 96
Office: F-310
Christophe LEPOITTEVIN
Personnel Chercheur - UGA
christophe.lepoittevin [at] neel.cnrs.fr
Phone: 04 56 38 71 92
Office: F-402
Pauline MARTINETTO
Personnel Chercheur - UGA
Pauline.Martinetto [at] neel.cnrs.fr
Phone: 04 76 88 74 14
Office: F-410
Isabelle MAURIN
Personnel Chercheur - CNRS
isabelle.maurin [at] neel.cnrs.fr
Phone: 04 76 88 79 40
Office: F-310
Salvatore MIRAGLIA
Personnel Chercheur - CNRS
salvatore.Miraglia [at] neel.cnrs.fr
Phone: 04 76 88 79 42
Office: F-206
Beatrice RUTA
Personnel Chercheur - CNRS
beatrice.ruta [at] neel.cnrs.fr
Phone: 04 76 88 14 84
Office: F-210
Denis TESTEMALE
Personnel Chercheur - CNRS
denis.testemale [at] neel.cnrs.fr
Phone: 04 76 88 10 45
Office: F-313
Pierre TOULEMONDE
Personnel Chercheur - UGA
pierre.toulemonde [at] neel.cnrs.fr
Phone: 04 76 88 74 21
Office: F-417
Léa ABOU-SAMRA
Personnel Chercheur - CNRS
lea.abou-samra [at] neel.cnrs.fr
Phone: 04 56 38 70 52
Office: F-401
Referent: Laetitia LAVERSENNE
Clara AIMAR
Personnel Chercheur - UGA
clara.aimar [at] neel.cnrs.fr
Office: ESRF-000
Referent: Julio Cesar DA SILVA
Elçin AKAR
Personnel Chercheur - UGA
elcin.akar [at] neel.cnrs.fr
Office: CEA-X
Referent: Martien DEN-HERTOG
Haroune AKHRIB
Personnel Chercheur - UGA
haroune.akhrib [at] neel.cnrs.fr
Phone: 04 76 88 74 03
Office: F-203B
Referent: Olivier ISNARD
Hester BLOMMAERT
Personnel Chercheur - CNRS
hester.blommaert [at] neel.cnrs.fr
Office: ESRF-000
Referent: Jean-Louis HAZEMANN
Redhouane BOUDJEHEM
Personnel Chercheur - CNRS
redhouane.boudjehem [at] neel.cnrs.fr
Referent: Jean-Louis HAZEMANN
Edmond CHAN
Personnel Chercheur - CNRS
edmond.chan [at] neel.cnrs.fr
Phone: 04 76 88 74 05
Office: F-205
Referent: Laura CHAIX
Antoine CORNET
Personnel Chercheur - CNRS
antoine.cornet [at] neel.cnrs.fr
Phone: 04 76 88 78 01
Office: F-312
Referent: Beatrice RUTA
Arij DHIAB
Personnel Chercheur - CNRS
arij.dhiab [at] neel.cnrs.fr
Phone: 04 56 38 70 52
Office: F-401
Referent: Laetitia LAVERSENNE
Soufiane EL-BIDAOUI
Personnel Chercheur - UGA
soufiane.el-bidaoui [at] neel.cnrs.fr
Phone: 04 76 88 74 05
Office: F-205
Referent: Olivier ISNARD
Salma EL-MAZOUNI
Personnel Technique - CNRS
salma.el-mazouni [at] neel.cnrs.fr
Office: F-323
Referent: Claire COLIN
Irene FESTI
Personnel Chercheur - CNRS
irene.festi [at] neel.cnrs.fr
Phone: 04 76 88 11 40
Office: F-209
Referent: Beatrice RUTA
Riku FUKADA
Personnel Chercheur - CNRS
riku.fukada [at] neel.cnrs.fr
Phone: 04 56 38 70 52
Office: F-401
Referent: Maria DIAZ-LOPEZ
Arnaud GRIFFOND
Personnel Technique - CNRS
arnaud.griffond [at] neel.cnrs.fr
Phone: 04 76 88 90 43
Office: V-112
Referent: Patricia DERANGO
Nikita KONSTANTINOV
Personnel Chercheur - UGA
nikita.konstantinov [at] neel.cnrs.fr
Phone: 04 76 88 74 03
Office: F-203B
Referent: Olivier ISNARD
Clément MONTEMBAULT
Personnel Chercheur - ESRF
clement.montembault [at] neel.cnrs.fr
Phone: 04 76 88 78 13
Office: F-422
Referent: Pauline MARTINETTO
Abdallah NASSEREDDINE
Personnel Chercheur - CNRS
abdallah.nassereddine [at] neel.cnrs.fr
Office: ESRF-000
Referent: Jean-Louis HAZEMANN
Hélène PASCO
Personnel Chercheur - UGA
helene.pasco [at] neel.cnrs.fr
Phone: 04 76 88 78 13
Office: F-422
Referent: Pauline MARTINETTO
Alberto RONCA
Personnel Chercheur - CNRS
alberto.ronca [at] neel.cnrs.fr
Phone: 04 76 88 11 40
Office: F-209
Referent: Beatrice RUTA
Jie SHEN
Personnel Chercheur - CNRS
jie.shen [at] neel.cnrs.fr
Phone: 04 76 88 11 40
Office: F-209
Referent: Beatrice RUTA
Coline THERON
Personnel Chercheur - CNRS
coline.theron [at] neel.cnrs.fr
Phone: 04 76 88 78 13
Office: F-422
Referent: Pauline MARTINETTO
Tristan VIALLET
Personnel Chercheur - G-INP
tristan.viallet [at] neel.cnrs.fr
Phone: 04 76 88 78 13
Office: F-422
Referent: Laura CHAIX
Alexis WARTELLE
Personnel Chercheur - CNRS
alexis.wartelle [at] neel.cnrs.fr
Phone: 04 76 88 11 66
Office: F-311
Referent: Martien DEN-HERTOG
Mathilde DEHUE
Personnel Chercheur - FLORALIS
mathilde.dehue [at] neel.cnrs.fr
Phone: 04 76 88 74 07
Office: F-419
Referent: Jean-Louis HAZEMANN
Alejandro FERNANDEZ-MARTINEZ
Personnel Chercheur - CNRS
alejandro.fernandez-martinez [at] neel.cnrs.fr
Phone: 04 76 88 11 40
Office: F-209
Referent: Jean-Louis HAZEMANN
Zéphyr GLANGEAUD MASSA
Personnel Technique - MINCATEC
zephyr.glangeaud-massa [at] neel.cnrs.fr
Phone: 04 76 88 90 43
Office: V-112
Referent: Patricia DERANGO
Gabriel-Ricardo GOMEZ-ESLAVA
Personnel Chercheur - CEA
gabriel.gomez [at] neel.cnrs.fr
Office: CEA-X
Referent: Patricia DERANGO
Roland HELLMANN
Personnel Chercheur - UGA
roland.hellmann [at] neel.cnrs.fr
Phone: 04 76 88 90 30
Office: V-115
Referent: Patricia DERANGO
Robin HINTZEN
Personnel Chercheur - floralis
robin.hintzen [at] neel.cnrs.fr
Phone: 04 76 88 90 30
Office: V-115
Referent: Patricia DERANGO
Luca PEREGO
Personnel Chercheur - ESRF
luca.perego [at] neel.cnrs.fr
Phone: 04 76 88 14 84
Office: F-210
Referent: Beatrice RUTA
Laurent TRUCHE
Personnel Chercheur - CNRS
laurent.truche [at] neel.cnrs.fr
Phone: 04 76 88 90 30
Office: V-115
Referent: Patricia DERANGO