Our research is based on the fundamental hypothesis that the activity and the exchange of energy or entropy at small scales control the physics of many systems which could appear very different at first glance. The team focuses on systems from room temperature such as mesoscopic living system or biopolymer self-assembly to nanoscopic system at very low temperatures where quantum effects emerge. This research leans on the development of electrical or thermal sensors of unprecedented sensitivity. They are applied to neuron and DNA auto-assembly, nanophononics, shape memory alloys, and nanocalorimetry for the study of phase transition in 2D systems to name few examples.
![]() |
|
The mechanisms responsible for phonon thermal transport at the nanoscale are studied via 3 omega measurements of thermal conductance of nanowire and membrane (0.3K-300K). These measurements illustrate the importance of various characteristic lengths: phonon mean free path, dominant phonon wave length, surface roughness. The general objective rely on heat manipulation at the nanoscale knowing that understanding phonon transport at the nanoscale is one of the most difficult experimental challenges of current mesoscopic physics. The thermal conductance of suspended silicon nanowire and silicon nitride membranes is measured from low temperature to high temperature. Since 2009, we have demonstrated that the thermal transport is dominated by phonon scattering on the surface. We used the presence of ballistic phonon transport at low temperature to reduce thermal conductance by doing nano-engineering of the phonon conductor. This reduction of thermal transport is of high interest for the increasing of the thermoelectric efficiency in nanostructured materials, as described below.
More details here (pdf)
C. Blanc, A. Rajabpour, S. Volz, T. Fournier, and O. Bourgeois « Phonon Heat Conduction in Corrugated Silicon Nanowires Below the Casimir Limit », Appl. Phys. Lett. 103, 043109 (2013). (pdf)
J-S. Heron, C. Bera, T. Fournier, N. Mingo, and O. Bourgeois « Blocking phonons via nanoscale geometrical design », Phys. Rev. B 82, 155458 (2010). (Virtual Journal of Nanoscale Science and Technology, 22, 20, November 8, 2010). (link)
J.-S. Heron, T. Fournier, N. Mingo and O. Bourgeois « Mesoscopic surface effects on the phonon transport in silicon nanowire », Nano Letters 9, 1861 (2009). (link)
We develop ultra-sensitive nano-sensors and their instrumentation to follow spikes propagation along the cells and their networks. Because nanoscale field effect transistors are able to overcome size limitation of conventional capacitive sensors (conventional commercial micro-electrodes), we are integrating silicon nanowires and graphene based FET arrays for multisite recording and stimulation of designable neurons networks. Such highly bio-compatible and highly sensitive bioelectronics appear also suitable for enhancing the time-stability of the current Brain Interfaces.
PhD theses :
– Interfacing neurons with nanoelectronics: form silicon nanowires to carbon devices, F. Veliev, thesis dissertation 2016 pdf
– Graphene bioelectronics for long term neuronal interfacing, A. Bourrier, thesis dissertation 2017 pdf
Articles :
– Sensing ion channels in neuronal networks with graphene transistors, F.Veliev et al pdf
– Recording spikes activity in cultured hippocampal neurons using flexible or transparent graphene transistors, F.Veliev et al pdf
Graphene monolayers have shown unique feature for neural interfaces by providing direct and highly adhesive contacts to neurons. Being crucial for extracellular detection of neural spikes, the tunable affinity of graphene with neurons appears also useful for achieving long lasting designable neuronal circuits.
Veliev, F., Briançon-Marjollet, A., Bouchiat, V., & Delacour, C. (2016). Impact of crystalline quality on neuronal affinity of pristine graphene. Biomaterials, 86, 33-41. PDF
DNA is the molecule storing the genetic code of all living organisms on earth. Its double helical structure as well as the complementary interactions between nucleobases gives to the molecule a setable double stranded structure that is controlled by the sequence of the single strands. The various genome projects lead the biotech industry to the developement of high efficiency sequencer and synthetizers, hence the cost of the materials have been greatly reduced. As a result DNA is becoming a generic material for programmable self assembly at the nanoscale. Our researchs are motivated by the understanding of the assembly pathways and their optimization in order to design functional nanomaterial with a natural interface with living systems.
DNA origami: the structure spontaneously self-assemble upon annealing of a mix of long genomic DNA taken out of plasmid and about 200 different shorter oligonucleotides
PhD Thesis of Clothilde Coilhac
Magnetic Heusler alloys of the type Ni2MnX(X=Ga, In, Sn, Sb…) exhibit magnetostructural transitions inducing caloric effects, giant deformations, shape memory effects, large magnetoresistance or piezoresistance and other important properties for potential applications. These properties result from a solid magnetostructural transformation from austenite to martensite and/or a solid rearrangement in the martensite phase. Our aim is to have a better understanding and characterization of the mechanisms involved in the multifunctional behavior and in the coupling of properties to open up new ways of controlling actuators and devices.
More details here (pdf)
D. Bourgault et al. APL 96, 132501 (2010) (link)
L. Porcar et al. APL. 100, 152405 (2012) (link)
Une nouvelle technologie de récupération de l’énergie ambiante pour alimenter les objets connectés
Le module thermoélectrique innovant Modulo, mis au point par l’Institut Néel du CNRS, récupère l’énergie thermique ambiante présente à petite échelle dans l’environnement et la convertit en tension électrique pour alimenter les objets connectés. La lettre de l’innovation du CNRS, reprise dans un article du Monde (supplément Science et Medecine) revient sur ce développement soutenu par le CNRS en 2016 et par la SATT Linksium en 2017.
Position type: Post-doc
Contact: Delacour Cécile -
The laboratory is looking for a neuro-physicist/electrophysiologist to investigate spike propagation within model neural network cultured on graphene-based interface. The main project consists of mapping single spike propagation along individual neurons, by combining controlled stimulation (patch clamp and light-gated ion channels stimulation) and real time monitoring with graphene field effect transistor GFET array. The candidate should have expertise in patch-clamp and optogenetics applied to neurons, and should be familiar with MEA recording, spike sorting, and graphene device technology. The laboratory is located at NEEL Institute, Grenoble and is focusing on sensing neurons using multidisciplinary approaches.
Position type: Stages Master-2 & Thèse
Contact: GUILLOU Hervé - 04 76 88 12 10
For soft matter engineering, DNA is the ideal polymer. In addition to being mechanically robust, chemically stable and enzymatically replicable, DNA is a sequence-defined polymer that can be designed to self-assemble into almost any shape, simply by tuning the arrangement of its monomers (the nucleotides). Given some DNA strands, a dynamic programming software can predict their thermodynamics from their sequences: the way they interact (binding energies) but also the structure they form at equilibrium (minimum free energy structure). Therefore, we see DNA as an ideal polymer to design, from the nanoscale, materials with unprecedented mechanical properties at the micro and macro scales.
Position type: Stages Licence & Master-1
Contact: GUILLOU Hervé - 04 76 88 12 10
For soft matter engineering, DNA is the ideal polymer. In addition to being mechanically robust, chemically stable and enzymatically replicable, DNA is a sequence-defined polymer that can be designed to self-assemble into almost any shape, simply by tuning the arrangement of its monomers (the nucleotides). Given some DNA strands, a dynamic programming software can predict their thermodynamics from their sequences: the way they interact (binding energies) but also the structure they form at equilibrium (minimum free energy structure). Therefore, we see DNA as an ideal polymer to design, from the nanoscale, materials with unprecedented mechanical properties at the micro and macro scales.
Position type: Stages Master-2 & Thèse
Contact: Olivier BOURGEOIS - 04 76 88 12 17
Le transport de chaleur par conduction à l’échelle macroscopique est bien décrit pas la loi de Fourier. Dans les solides cristallins les modes collectifs de vibrations du réseau, les phonons, définissent le cadre formel permettant une description quantitative du processus de transport de chaleur. Les phonons sont caractérisés par une longueur d’onde, une quantité de mouvement et des processus de diffusion qui permettent de relier leurs propriétés à la conductivité thermique des solides cristallins.
Aux petites échelles et a fortiori aux échelles moléculaires les vibrations collectives sont plus compliquées à déterminer et la notion même de température peut être mal définie. Le stage propose d’explorer expérimentalement ces concepts en se basant sur des géométries moléculaires contrôlées et auto-assemblées sur le principe d’origami d’ADN et sur une nouvelle méthode de microscopie thermique à balayage développée au sein de l’équipe.
Position type: Stages techniques
Contact: GUILLOU Hervé - 04 76 88 12 10
La nano-calorimétrie différentielle à balayage et la calorimétrie isotherme de titration sont deux méthodes expérimentales permettant d’accéder directement aux propriétés thermodynamiques de systèmes et en particulier de macromolécules en solution. Ces caractérisations jouent un rôle important pour le développement de médicaments et pour certains diagnostiques. Dans ce cas il est crucial d’avoir une détection à l’état de l’art car les molécules actives sont généralement diluées dans une solution aqueuse.
Position type: Stages Master-2 & Thèse
Contact: Porcar Laureline - 04 76 88 90 33
The aim of this internship is to work on eco-refrigeration using elastocaloric materials, an interesting alternative to that using the classic gaz compression cycle. We propose to work on the material processing and the characterization of its physical, magnetic and mechanical properties to improve its fatigue resistance.
Position type: Stages Master-2 & Thèse
Contact: Bourgault Daniel - 04 76 88 90 31 | -
Descriptif : L’objectif de ce stage est d’étudier les propriétés physiques de couches minces de type Heusler Fe-V-Al pour des applications de microgénération électrique ou de microrefroidissement thermoélectrique.
Person in charge: Herve GUILLOU
Permanents
Olivier BOURGEOIS
Personnel Chercheur - CNRS
Olivier.Bourgeois@neel.cnrs.fr
Phone: 04 76 88 12 17
Office: E-412
Laurent SAMINADAYAR
Personnel Chercheur - UGA
Laurent.Saminadayar@neel.cnrs.fr
Phone: 04 76 88 12 79
Office: E-417
Boris BRISUDA
Personnel Chercheur - CNRS
Phone: 04 76 88 12 86
Office: E-308
Referent: Olivier BOURGEOIS
Davide CAMMILLERI
Personnel Technique - CNRS
davide.cammilleri@neel.cnrs.fr
Referent: Olivier BOURGEOIS
Roderic CRAVERO
Personnel Chercheur - CNRS
Phone: 04 76 88 12 86
Office: E-308
Referent: Olivier BOURGEOIS
Martin HUBAUT
Personnel Chercheur - CNRS
Office: E-207
Referent: Hervé GUILLOU
Federico MAZZELLI
Personnel Chercheur - CNRS
federico.mazzelli@neel.cnrs.fr
Phone: 15 24
Office: E-305
Referent: Olivier BOURGEOIS
Nicolas PAILLET
Personnel Technique - CNRS
Office: E-415
Referent: Olivier BOURGEOIS
Lou-Anne VEYRAT-DE-LACHENAL
Personnel Chercheur - CNRS
lou-anne.veyrat-de-lachenal@neel.cnrs.fr
Referent: Olivier BOURGEOIS