Research. I am a condensed matter physicist with a theoretical background aiming at understanding the properties of various systems, from nanotubes to graphene, superconducting diamond or silicon to DNA nucleobasis, using the methodology of ab initio quantum simulations, namely “in silico” study of real materials based on the basic principles of quantum mechanics. Much emphasis is given to contributing to the development of novel approaches, in particular in the so-called field of many-body perturbation theory, to progress in the computer-aided description of materials, in terms of accuracy, complexity of the systems and of the “physical observables” that can be calculated. Current applications focus mainly on methodology (FIESTA initiative) for the study of organic and hybrid systems for photovoltaics or light emission (OLEDs).
Scientific history
CNRS associate researcher (1996-2005) and director (2005-)
Professor (PCC), Ecole Polytechnique, Palaiseau (2006-2009)
Habilitation à Diriger des Recherches (HDR) (23/01/2001)
Postdoc EPFL-Lausanne (1995-1996, advisor: Roberto Car)
Ph.D, UC Berkeley (dec.1994, advisor: S.G. Louie)
Ecole Normale Supérieure de Lyon (undergraduate studies)
Awards
2008 CNRS Silver medal
2014 Bull-Fourier prize
Main administrative duties
Deputy director, Condensed Matter department, Néel Institute (2016-2020)
CNRS national committee (section 05) (2012-2016)
Head national Research group (GDR) CoDFT (2010-2014)
Secretary, French physical society, condensed matter division (2005-2008)
AB INITIO MANY-BODY PERTURBATION THEORY: THE FIESTA INITIATIVE
In the present field of condensed-matter physics, many-body perturbation theory represent a family of techniques aiming at calculating the correlation energy of electronic systems in general, including electon-electron, electron-hole, electron-phonon etc. interactions, going beyond mean-field approaches such as Hartree-Fock or density functional (DFT) theories. A specific class of techniques developed in the mid-60s relies on the inclusion of 2-body, 3-body etc. interactions, as in standard perturbation theory, but considering the dynamically screened Coulomb interaction W(r,r’; ω) instead of the (stronger) bare Coulomb potential 1/|r-r’|. The GW and Bethe-Salpeter formalisms are low-order approximation for describing electron-electron and electron-hole interactions within this family of techniques. They have been shown to yield quasiparticle energies (“band structures”) and optical (excitonic) spectra in much better agreement with experiment as compared e.g. to standard DFT, for a very large class of systems.
In order to study organic systems with a good tradeoff between computer time and accuracy, and also to have a computational platform that we can easily use to implement and test new approximations and functionalities, we are developing a real-space Gaussian-basis GW and Bethe-Salpeter code, the Fiesta package, allowing to study systems comprizing a few hundred atoms with “reasonnable” computer resources. A first class of applications, which motivated the Fiesta initative, concerns organic systems for photovoltaic applications. Recent developments include embeddingstrategies, namely the possibility to account for a complex electrostatic and dielectric environment using discrete (QM/MM) or continuous (PCM) models. Visit the Fiesta homepage.
Robust analytic continuation approach to many-body GW calculations, Duchemin, Blase, J. Chem. Theory Comput. 16, 1742 (2020).
Separable Resolution-of-the-Identity with All-Electron Gaussian Bases: Application to Cubic-scaling RPA, Duchemin, Blase, J. Chem. Phys. 150, 174120 (2019).
The Bethe-Salpeter Formalism with Polarisable Continuum Embedding: Reconciling Linear-Response and State-Specific Features, Duchemin, Achille Guido, Jacquemin and Blase, Chem. Sci., 9, 4430 (2018).
Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids, Li, D’Avino, Duchemin, Beljonne, and X. Blase, J. Phys. Chem. Lett. 7, 2814 (2016).
ORGANIC OPTO-ELECTRONICS for OLEDs and PHOTOVOLTAICS
Organic opto-electronics for photovoltaics or light-generation (OLEDs) is concerned with systems of which the photoactive material is made of organic molecules or small polymers, instead e.g. of silicon thin films. Even though providing today photovoltaic power conversion efficiencies still smaller than standard inorganic cells, the low cost and large variety of active molecules or polymers offer much perspectives for the years to come. On the contrary, flat-panel displays made of organic light-emitting devices (OLEDs) are already used at an industrial level. From a scientific point of view, the basic mechanisms believed to contribute to the physics or chemistry of these systems, such as charge/energy transfer excitations electron-vibration (polaronic) coupling, or doping mechanisms in organic semiconductors, remain very much to be better understood, while being at the same time at the heart of a large variety of exciting fields, including photosynthesis or photochemistry. The study of such systems, composed of a disordered mixing of molecular building blocks comprizing up to a hundred atoms each, is still a challenge to “accurate enough” quantum theories, so that both methodology developments and applications to systems of increasing realism as compared to experiment, must be pursued at the same time. This is in particular the origin of our Fiesta initiative above mentioned. Selected publications:
Orientation Dependent Molecular Electrostatics Drives Efficient Charge Generation in Homojunction Organic Solar Cells, Dong et al.Nature Communications11, 4617 (2020).
Host dependence of the electron affinity of molecular dopants, Li et al. Materials Horizons 2019, 6, 107-114.
Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory, Li, D’Avino, Duchemin, Beljonne, Blase, Phys. Rev. B 97, 035108 (2018).
Short-range to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: A Bethe-Salpeter study, Duchemin, Deutsch, Blase, Phys. Rev. Lett. 109, 167801 (2012).
First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications, Blase et al. Phys. Rev. B 83, 115103 (2011).
SUPERCONDUCTIVITY IN DOPED SEMICONDUCTORS
When heavily doped, semiconductors or insulators undergo the so-called Mott insulating-metallic transition. This subject was initiated in 2003 by the study of polymerized cage-like low-density sp3 silicon phases (clathrates) allowing heavy intercalation doping (D. Connetable PhD thesis). The ab initio study of the electron-phonon coupling matrix elements, combined with the Eliashberg formalism and the phonon-mediated BCS picture, allows to provide insight into the superconducting mechanisms and the typical transition temperature (Tc). Our discussion of the superconducting transition in silicon clathrates in 2003 was followed by the discovery of a superconducting transition in heavily B-doped diamond (2004) and silicon (2006). Selected publications:
Superconducting Group IV Semiconductors, Blase et al. Nature Materials 8, 375-382 (2009)
Superconductivity in doped cubic silicon, Bustarret et al. Nature 444, 465-468 (2006)
Role of the Dopant in the Superconductivity of Diamond, Blase et al. PRL 93, 237004 (2004)
Superconductivity in doped sp3 semiconductors: the clathrates, Connetable et al. PRL 91, 247001 (2003).
ELECTRONIC TRANSPORT IN NANOTUBES AND GRAPHENE
Amongst all potential applications relying on the mechanical, electronic, or optical properties of nanotubes and graphene, their electronic conductivity has been generating much work with early experimental demonstrators of active transistors where the canal is a nanotube or graphene. Several difficult issues are related to our ability to doped, functionalize, and in general taylor the properties of the conducting canal without destroying the exceptional transport properties of the pristine tube, graphene ribbon, etc. Following an early initiative to develop a simple ab initio code calculating the conductance of 1D systems within a Green’s function formalism restricted to the linear regime (code Tablier, Adessi/Blase), we have developed a collaboration with Stephan Roche (CEA Grenoble, now in Barcelona) to bridge the gap between ab initio simulations at the nanoscale, and mesoscopic physics concerned with the study of systems of which the size is larger than the scattering length. We could calculate the conductance of micrometer long tubes, wires or ribbons randomly doped or functionalized, averaging over hundreds of disorder configurations, to calculate the average conductance as a function of incoming wavepacket energy, and the related scattering and localization lenghts. While restricted to the linear regime, such ab initio studies could provide clear information on the type of doping or functionalization that would optimally preserve as much as possible the conductance of the charge-carrying canal. Selected publications:
Effect of the Chemical Functionalization on Charge Transport in Carbon Nanotubes at the Mesoscopic Scale, Lopez-Bezanilla et al. Nano Lett. 9, 940944 (2009)
Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons, B. Biel et al. PRL 102, 096803 (2009)
Charge Transport in Chemically Doped 2D Graphene, Lherbier et al. PRL 101, 036808 (2008)
Electronic and transport properties of nanotubes, Charlier et al. RMP 79, 677 (2007)
Fiesta
Fiesta: a Gaussian-basis GW and Bethe-Salpeter code
This is a very minimal Fiesta website. Detailed features, benchmark calculations, examples, can be found in the related papers (see Publications list below). Fiesta is used as a platform for developing novel ideas and running small to large-scale applications. Fiesta is not an open-source package freely distributed, even though it is shared by a few academic friendly partners. As it stands, Fiesta allows only finite size systems (clusters, molecules) calculations.
Fiesta ad minima. The Fiesta code implements the GW and Bethe-Salpeter formalisms using Gaussian bases and resolution-of-the-identity techniques (RI-SVS density and RI-V Coulomb metric). Dynamical screening contribution to the self-energy is explicitely accounted for through a contour deformation approach. Self-consistency on the wavefunctions is implemented at the static COHSEX level. Tamm-Dancoff approximation (TDA) or full Bethe-Salpeter calculations can be performed. The code presently reads input Kohn-Sham eigenstates from the Orca and NWChem packages. Any DFT code dumping all Kohn-Sham eigenstates (occupied/unoccupied) expressed on a Gaussian basis set can be branched rather straighforwardly onto the Fiesta code.
Fiesta is a massively parallel code (MPI/F90) with scalability demonstrated up to more than 60000 cores (Bull-Fourier prize 2014).
Embedding. The Fiesta code implements continuous polarizable models (PCM) and is merged with the Mescal Discrete Polarizable Model (DPM) [see: D’Avino et al., JCTC 2014; Li, D’Avino et al. JPC Lett. 2016] so as to provide embedded GW and Bethe-Salpeter QM/MM formalisms.
Fiesta has now evolved into the beDeft (beyond-DFT) package, a major C++/MPI restructuration including a newly developed analytic continuation approach [JCTC 16, 1742], cubic-scaling “space-time” RPA and GW [JCTC 17, 2383], and a subsystem-based GW formalism. On-going efforts to implement excited-states BSE gradients within the Z-vector formalism [JCP 159, 024116]. The Fiesta and beDeft codes have been so far shared with a few selected academic partners. A github open-access version is under active preparation.
PEOPLE. The initial Fiesta GW/Bethe-Salpeter code was written as a serial F90 version in 2010 by Xavier Blase (Institut Neel, CNRS, Grenoble). Then came the serious developers, in particular Ivan Duchemin (L_sim/INAC/CEA/Grenoble) who optimized the code, wrote the MPI parallel Fiesta version, implemented the RI-V (Coulomb metric) resolution of the identity and the “beyond Tamm-Dancoff” version of Bethe-Salpeter. Paul Boulanger , as a postdoc here in Grenoble (2013-2014), seriously consolidated the code by making, among other things, the connection with the NWChem package, opening the door to all-electron calculations with well-tested and more systematic bases (Dunning correlation consistent basis, etc.) Carina Faber, as a PhD student, performed most of the first calculations related to this project (and designed the logo we are using today on the basis of her German vision of French people). Claudio Attaccalite performed benchmark calculations with the planewave GW/BSE Yambo code. Finally, Valerio Olevano served as the wise man in the early part of this project, guiding us as Dante through the inferno of the recent developments in the field. Jing Li (postdoc, 2015-2017) and Gabriele D’Avino developed the QM/MM Fiesta fonctionality by coupling with the Mescal MM code, a discrete polarizable model with induced charges and dipoles response. Implementation of analytic forces in the excited-state is being implemented by Jose De Jesus Villalobos-Castro as a postdoctoral fellow.
List of publications based on BSE/GW calculations performed with Fiesta and beDeft. Publications associated with the newest beDeft package are indicated with a 🟢.
Preprint
🟢 “Many-body GW calculations with very large scale polarizable environments made affordable: a fully ab initio QM/QM approach”, David Amblard, Xavier Blase, Ivan Duchemin, Link to preprint
“Multiorbital exciton formation in an organic semiconductor”, Wiebke Bennecke et al. Link to preprint
“Electronic Polarization Effects in Core-Level Spectroscopy”, Iskander Mukatayev, Gabriele D’Avino, Benoit Sklenard, Valerio Olevano, Jing Li, Link to preprint
RICL
🟢 “Lagrangian Z-vector approach to Bethe-Salpeter analytic gradients: Assessing approximations”, Jose D. J. Villalobos-Castro, Iryna Knysh, Denis Jacquemin, Ivan Duchemin, Xavier Blase, J. Chem. Phys. 159, 024116 (2023). Link to paper Link to preprint
“Are Coarse-Grained Structures as Good as Atomistic Ones for Calculating the Electronic Properties of Organic Semiconductors ?”, Otello Maria Roscioni, Matteo Ricci, Claudio Zannoni, and Gabriele D’Avino, J. Phys. Chem. C 127, 9225 (2023). Link to paper
“Assessing the Role of the Kohn-Sham Density in the Calculation of the Low-Lying Bethe-Salpeter Excitation Energies”, Aseem Rajan Kshirsagar and Roberta Poloni, J. Phys. Chem. A 127, 11, 2618-2627 (2023). Link to paper
🟢 “Exploring Bethe-Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push-Pull Oligomers”, Iryna Knysh, Jose D. J. Villalobos-Castro, Ivan Duchemin, Xavier Blase*, and Denis Jacquemin*, J. Phys. Chem. Lett. 14, 3727 (2023). Link to paper
🟢 “Excited state potential energy surfaces of N-phenylpyrrole upon twisting: reference values and comparison between BSE/GW and TD-DFT”, Iryna Knysh, Kerlvine Letellier, Ivan Duchemin, Xavier Blase, and Denis Jacquemin, Chem. Phys. Phys. Chem. 25, 8376 (2023) [PCCP 2023 Hot paper]. Link to paper
🟢 “Universal polarization energies for defects in monolayer, surface, and bulk hexagonal boron nitride: A finite-size fragments GW approach”, D. Amblard, G. D’Avino, I.Duchemin, and X. Blase, Phys. Rev. Materials 6, 064008 (2022). Link to paper Link to preprint
🟢 “Modeling of excited state potential energy surfaces with the Bethe-Salpeter equation formalism: The 4-(dimethylamino)benzonitrile twist”, Iryna Knysh, Ivan Duchemin, Xavier Blase, and Denis Jacquemin, J. Chem. Phys. 157, 194102 (2023). Link to paper
“Bethe-Salpeter equation insights into the photo-absorption function and exciton structure of chlorophyll a and b in light-harvesting complex II”, Jing Li and Valerio Olevano, Journal of Photochemistry and Photobiology B: Biology, 232 , 112475 (2022). Link to paper
“Doping of semicrystalline conjugated polymers: dopants within alkyl chains do it better”, M. Comin, V. Lemaur, A. Giunchi, D. Beljonne, X. Blase, and G. D’Avino, J. Mater. Chem. C 10 , 13815 (2022). Link to paper (Open)
“Photoluminescent properties of the carbon-dimer defect in hexagonal boron-nitride: a many-body finite-size cluster approach”, M. Winter, M.H.E. Bousquet, D. Jacquemin, I. Duchemin, X. Blase, Phys. Rev. Materials 5, 095201 (2021).Link to paper Link to preprint
“Reference Energies for Intramolecular Charge-Transfer Excitations”, Pierre-Francois Loos, Massimiliano Comin, Xavier Blase, Denis Jacquemin, J. Chem. Theory Comput. 2021, 17, 6, 3666-3686. Link to paper Link to preprint
“Strongly Bound Excitons in Metal-Organic Framework MOF-5: A Many-Body Perturbation Theory Study”, Aseem Rajan Kshirsagar, Xavier Blase, Claudio Attaccalite, and Roberta Poloni, J. Phys. Chem. Lett. 2021, 12, 16, 4045-4051. Link to paper Link to ChemRxiv preprint
“Bethe-Salpeter Study of the Optical Absorption of trans and cis Azobenzene-Functionalized Metal-Organic Frameworks using Molecular and Periodic Models”, AR Kshirsagar, C Attaccalite, X Blase, J Li, R Poloni, J. Phys. Chem. C 2021, 125, 13, 7401-7412. Link to paper Link to ChemRxiv preprint
🟢 “Cubic-scaling all-electron GW calculations with a separable density-fitting space-time approach”, Ivan Duchemin and Xavier Blase, J. Chem. Theory Comput. 2021, 17, 4, 2383-2393. Link to paper Link to arXiv preprint
🟢 “Robust analytic continuation approach to many-body GW calculations”, Ivan Duchemin, Xavier Blase, J. Chem. Theory Comput. 16, 1742 (2020). Link to paper Link to arXiv preprint
“Orientation Dependent Molecular Electrostatics Drives Efficient Charge Generation in Homojunction Organic Solar Cells”, Y. Dong, V. Nikolis, F. Talnack, Y-C. Chin, J. Benduhn, G. Londi, J. Kublitski, X. Zheng, S. Mannsfeld, D. Spoltore, L. Muccioli, J. Li, X. Blase, D. Beljonne, J-S. Kim, A. Bakulin, G. D’Avino, J. Durrant, K. Vandewal, Nature Communications 11, 4617 (2020). Link to paper
“Optical properties of graphene quantum dots: the role of chiral symmetry”, Denis Basko, Ivan Duchemin, Xavier Blase, 2D Materials, 7, 025041 (2020). Link to paper Link to arXiv preprint
“Ground-state correlation energy of beryllium dimer by the Bethe-Salpeter equation”, by Jing Li, Ivan Duchemin, Xavier Blase, Valerio Olevano, SciPost Phys. 8, 020 (2020). Link to paper (Open Access)
🟢 “Separable Resolution-of-the-Identity with All-Electron Gaussian Bases: Application to Cubic-scaling RPA”, Ivan Duchemin, Xavier Blase, J. Chem. Phys. 150, 174120 (2019). Link to paper Link to arXiv preprint
“Host dependence of the electron affinity of molecular dopants”, Jing Li, Ivan Duchemin, Otello Maria Roscioni, Pascal Friederich, Marie Anderson, Enrico Da Como, Gabriele Kociok-Köhn, Wolfgang Wenzel, Claudio Zannoni, David Beljonne, Xavier Blase, and Gabriele D’Avino, Materials Horizons 2019, 6, 107-114. Link to pdf (Open Access)
“The Bethe-Salpeter Formalism with Polarisable Continuum Embedding: Reconciling Linear-Response and State-Specific Features”, Ivan Duchemin, Ciro Achille Guido, Denis Jacquemin and Xavier Blase, Chem. Sci., 9, 4430 (2018). DOI: 10.1039/C8SC00529J. Link to pdf (Open Access)
“Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory”, Jing Li, Gabriele D’Avino, Ivan Duchemin, David Beljonne, Xavier Blase, Phys. Rev. B 97, 035108 (2018). Link to arXiv Link to paper (Open Access)
“Tuning Optical Properties of Dibenzochrysenes by Functionalization: A Many-Body Perturbation Theory Study”, Nicolas Dardenne , Roberto Cardia, Jing Li, Giuliano Malloci, Giancarlo Cappellini, Xavier Blase, Jean-Christophe Charlier, and Gian-Marco Rignanese, J. Phys. Chem. C, 2017, 121 (44), pp 24480-24488. Link to paper
“Correlated electron-hole mechanism for molecular doping in organic semiconductors”, Jing Li, Gabriele D’Avino, Anton Pershin, Denis Jacquemin, Ivan Duchemin, David Beljonne, Xavier Blase, Phys. Rev. Materials 1, 025602 (2017). [Editor’s choice] Link to paper (open access)
“Is the Bethe-Salpeter Formalism Accurate for Excitation Energies ? Comparisons with TD-DFT, CASPT2 and EOM-CCSD”, Denis Jacquemin, Ivan Duchemin, Xavier Blase, J. Phys. Chem. Lett. 8, 1524 (2017). Link to paper
“Helium Atom Excitations by the GW and Bethe-Salpeter Many-Body Formalism”, Jing Li, Markus Holzmann, Ivan Duchemin, Xavier Blase, Valerio Olevano, Phys. Rev. Lett. 118, 163001 (2017). Link to paper Link to arXiv
“Modelling the Photochrome-TiO2 Interface with Bethe-Salpeter and TD-DFT Methods”, Daniel Escudero, Ivan Duchemin, Xavier Blase, Denis Jacquemin, J. Phys. Chem. Lett. 8, 936 (2017). Link to paper
“Benchmark of Bethe-Salpeter for Triplet Excited-States”, Denis Jacquemin, Ivan Duchemin, Aymeric Blondel, and Xavier Blase, J. Chem. Theory Comput. 13 767 (2017). Link to paper
“Hybrid and constrained resolution-of-identity techniques for Coulomb integrals”, Ivan Duchemin, Jing Li, and Xavier Blase, J. Chem. Theor. Comput. 13 1199 (2017). Link to paper
“Bethe-Salpeter Study of Cationic Dyes: Comparisons with ADC(2) and TD-DFT”, Cloé Azarias, Ivan Duchemin, X. Blase, and Denis Jacquemin, J. Chem. Phys. 146, 034301 (2017). Link to paper
“Assessment of the Accuracy of the Bethe-Salpeter (BSE/GW) Oscillator Strengths”, Denis Jacquemin, Ivan Duchemin, Aymeric Blondel, and Xavier Blase, J. Chem. Theory Comput. 12, 3969-3981 (2016). Link to paper
“Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids”, Jing Li, Gabriele D’Avino, Ivan Duchemin, David Beljonne, and Xavier Blase, J. Phys. Chem. Lett. 2016 (ASAP). Link to paper
“Electronic and optical properties of hexathiapentacene in the gas and crystal phases”, R. Cardia, G. Malloci, G.-M. Rignanese, X. Blase, E. Molteni, and G. Cappellini, Phys. Rev. B 93, 235132 (2016). Link to paper
“Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach”, Ivan Duchemin, Denis Jacquemin and Xavier Blase, J. Chem. Phys. 144, 164106 (2016). Link to paper
“GW and Bethe-Salpeter study of small water clusters”, X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, and I. Duchemin, J. Chem. Phys. 144, 034109 (2016). Link to paper
“0-0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2 and BSE/GW formalisms for 80 Real-Life Compounds”, Jacquemin, Denis; Duchemin, Ivan; Blase, Xavier, J. Chem. Theory Comput., 2015, 11 (11), pp 5340-5359. Article on JCTC cover
“Ab initio Calculations of Open Cell Voltage in Li-ion Organic Radical Batteries”, Dardenne, Nicolas; Blase, Xavier; Hautier, Geoffroy; Charlier, Jean-Christophe; Rignanese, Gian-Marco, J. Phys. Chem. C J. Phys. Chem. C, 2015, 119 (41), pp 23373-23378. Link to paper
“Benchmarking the Bethe-Salpeter Formalism on a Standard Organic Molecular Set”, D. Jacquemin, I. Duchemin, X. Blase, J. Chem. Theory Comput. 2015, 11, pp 3290-3304. Open access ACS Editor’s choice. Link to paper
“Exploring approximations to the GW self-energy ionic gradients”, C. Faber, P. Boulanger, C. Attaccalite, E. Cannuccia, I. Duchemin, T. Deutsch, X. Blase, Phys. Rev. B 91, 155109 (2015). Link to paper
“Does excess energy assist photogeneration in an organic low band-gap solar cell?”, Tobias Hahn, Johannes Geiger, Xavier Blase, Ivan Duchemin, Dorota Niedzialek, Steffen Tscheuschner, David Beljonne, Anna Köhler and Heinz Bässler, Adv. Funct. Mater. 25 (8), pp. 1287-1295 (2015). Online Abstract
“First principles calculations of charge transfer excitations in polymer-fullerene complexes: Influence of excess energy”, D. Niedzialek, I. Duchemin, T. Branquinho de Queiroz, S. Osella, A. Rao, R. Friend, X. Blase, S. Kümmel, and D. Beljonne, Adv. Funct. Mater. 25 pp. 1287-1295 (2015). Online Abstract
2014
“Combining the Bethe-Salpeter Formalism with Time-Dependent DFT Excited-State Forces to Describe Optical Signatures: NBO Fluoroborates as Working Examples”, P. Boulanger, S. Chibani, B. Le Guennic, I. Duchemin, X. Blase, and D. Jacquemin, J. Chem. Theory Comput. 2014, 10 (10), pp 4548-4556. Link to paper
“Benchmark Many-Body GW and Bethe-Salpeter calculations for small transition-metal molecules”, S. Korbel, P. Boulanger, I. Duchemin, X. Blase, M.A.L. Marques, and S. Botti, J. Chem. Theory Comput. (in press). Abstract online
“Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach”, P. Boulanger, D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. Theory Comput., 2014, 10 (3), pp 1212-1218 Abstract online
” Review article: Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green’s function formalisms”, C. Faber, P. Boulanger, C. Attaccalite, I. Duchemin, and X. Blase, “Special issue: Density functional theory across chemistry, physics and biology”, Phil. Trans. R. Soc. A. (2014) 372 , Link to Paper
“Many-body Green’s function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide”, C. Faber, P. Boulanger, I. Duchemin, C. Attaccalite, and X. Blase, J. Chem. Phys. 139, 194308 (2013). Link to Paper
“Resonant hot charge-transfer excitations in fullerene-porphyrin complexes: a many-body Bethe-Salpeter study”, I. Duchemin and X. Blase, Phys. Rev. B 87, 245412 (2013). Link to Paper
“Many-body Green’s function study of coumarins for dye-sensitized solar cells”, C. Faber, I. Duchemin, T. Deutsch, X. Blase, Phys. Rev. B, 86, 155315 (2012). Link to APS
“Short-range to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: A Bethe-Salpeter study”, I. Duchemin, T. Deutsch, X. Blase, Phys. Rev. Lett. 109, 167801 (2012). Link to APS arXiv:1204.2179
“Molecular Fingerprints in the Electronic Properties of Crystalline Organic Semiconductors: From Experiment to Theory”, S. Ciuchi, R.C. Hatch, H. Hochst, C. Faber, X. Blase, S. Fratini, Phys. Rev. Lett. 108, 256401 (2012). Link to APS
“Electron-phonon coupling and charge-transfer excitations in organic systems from many-body perturbation theory” (Invited review), C. Faber, I. Duchemin, T. Deutsch, C. Attaccalite, V. Olevano, X. Blase, J. Matter. Sci. 47, 7472 (2012). Springer link
“Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach”, X. Blase, C. Attaccalite, Appl. Phys. Lett. 99, 171909 (2011). AIP link
“Electron-phonon coupling in the C60 fullerene within the many-body GW approach”, Carina Faber, Jonathan Laflamme Janssen, Michel Cote, E. Runge, X. Blase, Phys. Rev. B 84, 155104 (2011). APS link
“First-principles GW calculations for DNA and RNA nucleobases”, Carina Faber, Claudio Attaccalite, V. Olevano, E. Runge, X. Blase, Phys. Rev. B 83, 115123 (2011). Link to APS
“First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications”, Xavier Blase, Claudio Attaccalite, Valerio Olevano, Phys. Rev. B 83, 115103 (2011). Link to APS
Summer/Winter schools
Selected lectures from summer/winter schools (selection)
An Introduction to the Density Functional Theory, Autumn School on Correlated Electrons: Many-Body Methods for Real Materials, 16-20 September 2019, Forschungszentrum Jülich, Germany: Link to pdf
An Introduction to the GW Green’s function many-body perturbation theory, Ecole thématique RaProche, Station Biologique de Roscoff, 07-12 Octobre 2018, France: Link to pdf
An introduction to Solid-State Physics, International summer School in electronic structure Theory: electron correlation in Physics and Chemistry, Centre Paul Langevin, Aussois, Savoie, France: Link to pdf
An introduction to Green’s function in many-body condensed-matter quantum systems, International summer School in electronic structure Theory: electron correlation in Physics and Chemistry, Centre Paul Langevin, Aussois, Savoie, France: Link to pdf
In construction …
Solid State Physics (M1)
Lecture notes for a Solid State Physics class given at the Master 1 level at the University Grenoble Alpes.
Goal: This solid-state physics class aims at providing the basics theories that allow to understand the properties of materials, and in particular their electronic and vibrational properties. Why are some solids metallic and other semiconducting ? Can we calculate their specific heat ? What is their velocity of sound ? Applications to low-dimensional systems (including graphene and nanotubes) will serve as a bridge to nanosciences.
Content: The historical Drude model of conductivity / Introducing quantum mechanics : non-interacting electrons in a box / Density of states in several dimensions / Translational properties and Bloch theorem : reducing the complexity / Reciprocal space and Brillouin zone / Tight-binding approximation and band structures / Examples : graphene, Peierls distortion, the minimal cuprate, s-p and s-d hybridization, etc. / Phonons ; acoustic and optical modes.
Lectures and Documents
Lecture 1 : The historical Drude model of conductivity. Documents :
Over 170 publications in peer-reviewed journals including Science, Nature (2), Nature Materials, Review of Modern Physics, Chemical Society Reviews, Physical Review Letters (25), etc. gathering 18000+ citations (WOS). Nine book chapters. H-factor = 65 (source WOS).
Preprints
“From many-body ab initio to effective excitonic models: a versatile mapping approach including environmental embedding effects”, Mauricio Rodriguez-Mayorga, Xavier Blase, Ivan Duchemin, Gabriele D’Avino, J. Chem. Theory. Comput. (in press, 2024). Link to preprint
2024
“Polarizable Continuum Models and Green’s Function GW Formalism: On the Dynamics of the Solvent Electrons”, Ivan Duchemin David Amblard and Xavier Blase, J. Chem. Theory. Comput. (2024). Link to paper Link to preprint
“Reference CC3 Excitation Energies for Organic Chromophores: Benchmarking TD-DFT, BSE/GW, and Wave Function Methods”, Iryna Knysh, Filippo Lipparini, Aymeric Blondel, Ivan Duchemin, Xavier Blase, Pierre-François Loos, Denis Jacquemin, J. Chem. Theory. Comput. (2024). Link to paper
“Preempted phonon-mediated superconductivity in the infinite-layer nickelates”, Q. N. Meier, J. B. de Vaulx, F. Bernardini, A. S. Botana, X. Blase, V. Olevano, A. Cano, Phys. Rev. B 109 184505 (2024). Link to paper Link to preprint
“Static versus dynamically polarizable environments within the many-body GW formalism”, D. Amblard, X. Blase, I. Duchemin, J. Chem. Phys. 2024, 160 (15), pp.154104. Link to paper Link to preprint
“Disentangling the multiorbital contributions of excitons by photoemission exciton tomography”, Wiebke Bennecke et al., Nature Communications, 2024, 15 (1), pp.1804. Link to paper (Open access)
“Assessing the accuracy of TD-DFT excited-state geometries through optimal tuning with GW energy levels”, I. Knysh, D. Raimbault, I. Duchemin, X. Blase, D. Jacquemin, J. Chem. Phys. 160, 144115 (2024) Link to paper Link to preprint
2023
“Many-body GW calculations with very large scale polarizable environments made affordable: a fully ab initio QM/QM approach”, David Amblard, Xavier Blase, Ivan Duchemin, J. Chem. Phys. 159, 164107 (2023). Link to paper Link to preprint
“Lagrangian Z-vector approach to Bethe-Salpeter analytic gradients: Assessing approximations”, Jose D. J. Villalobos-Castro, Iryna Knysh, Denis Jacquemin, Ivan Duchemin, Xavier Blase, J. Chem. Phys. 159, 024116 (2023). Link to paper Link to preprint
“Exploring Bethe-Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push-Pull Oligomers”, Iryna Knysh, Jose D. J. Villalobos-Castro, Ivan Duchemin, Xavier Blase*, and Denis Jacquemin*, J. Phys. Chem. Lett. 14, 3727 (2023). Link to paper
“Excited state potential energy surfaces of N-phenylpyrrole upon twisting: reference values and comparison between BSE/GW and TD-DFT”, Iryna Knysh, Kerlvine Letellier, Ivan Duchemin, Xavier Blase, and Denis Jacquemin, Phys. Chem. Chem. Phys. 25, 8376 (2023) [PCCP 2023 Hot paper]. Link to paper
2022
“Universal polarization energies for defects in monolayer, surface, and bulk hexagonal boron nitride: A finite-size fragments GW approach”, D. Amblard, G. D’Avino, I.Duchemin, and X. Blase, Phys. Rev. Materials 6, 064008 (2022). Link to paper Link to preprint
“Modeling of excited state potential energy surfaces with the Bethe-Salpeter equation formalism: The 4-(dimethylamino)benzonitrile twist”, Iryna Knysh, Ivan Duchemin, Xavier Blase, and Denis Jacquemin, J. Chem. Phys. 157, 194102 (2023). Link to paper
“Doping of semicrystalline conjugated polymers: dopants within alkyl chains do it better”, M. Comin, V. Lemaur, A. Giunchi, D. Beljonne, X. Blase, and G. D’Avino, J. Mater. Chem. C (2022). Link to paper Link to preprint
“Doping-Induced Dielectric Catastrophe Prompts Free-Carrier Release in Organic Semiconductors”, M. Comin, S. Fratini, X. Blase, G. D’Avino. Advanced Materials (2022), 34 (2), pp.2105376. Link to paper Link to preprint
2021
“Photoluminescent properties of the carbon-dimer defect in hexagonal boron-nitride: a many-body finite-size cluster approach”, M. Winter, M.H.E. Bousquet, D. Jacquemin, I. Duchemin, X. Blase, Phys. Rev. Materials 5, 095201 (2021). Link to paper Link to preprint
“Reference Energies for Intramolecular Charge-Transfer Excitations”, Pierre-Francois Loos, Massimiliano Comin, Xavier Blase, Denis Jacquemin, J. Chem. Theory Comput. 2021, 17, 6, 3666-3686. Link to paper Link to preprint
“Strongly Bound Excitons in Metal-Organic Framework MOF-5: A Many-Body Perturbation Theory Study”, Aseem Rajan Kshirsagar, Xavier Blase, Claudio Attaccalite, and Roberta Poloni, J. Phys. Chem. Lett. 2021, 12, 16, 4045-4051. Link to paper Link to ChemRxiv preprint
“Cubic-scaling all-electron GW calculations with a separable density-fitting space-time approach”, Ivan Duchemin and Xavier Blase, J. Chem. Theory Comput. 2021, 17, 4, 2383-2393. Link to paper Link to arXiv preprint
“Bethe-Salpeter Study of the Optical Absorption of trans and cis Azobenzene-Functionalized Metal-Organic Frameworks using Molecular and Periodic Models”, AR Kshirsagar, C Attaccalite, X Blase, J Li, R Poloni, J. Phys. Chem. C 2021, 125, 13, 7401-7412. Link to paper Link to ChemRxiv preprint
2020
“Orientation Dependent Molecular Electrostatics Drives Efficient Charge Generation in Homojunction Organic Solar Cells”, Y. Dong, V. Nikolis, F. Talnack, Y-C. Chin, J. Benduhn, G. Londi, J. Kublitski, X. Zheng, S. Mannsfeld, D. Spoltore, L. Muccioli, J. Li, X. Blase, D. Beljonne, J-S. Kim, A. Bakulin, G. D’Avino, J. Durrant, K. Vandewal, Nature Communications 11, 4617 (2020). Link to paper
“Dynamical correction to the Bethe-Salpeter equation beyond the plasmon-pole approximation”, P.-F. Loos and X. Blase, J. Chem. Phys. 153, 114120 (2020). Link to paper arXiv preprint
“The Bethe-Salpeter Equation Formalism: From Physics to Chemistry (Invited Perspective)”, X. Blase, I. Duchemin, D. Jacquemin, and P.-F. Loos, J. Phys. Chem. Lett. 11, 7371 (2020). Link to paper Link to arXiv preprint
“Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies”, Pierre-François Loos, Anthony Scemama, Ivan Duchemin, Denis Jacquemin, and Xavier Blase J. Phys. Chem. Lett. 11, 3536 (2020). Link to paper Link to arXiv preprint
“Robust analytic continuation approach to many-body GW calculations”, Ivan Duchemin, Xavier Blase, J. Chem. Theory Comput. 16, 1742 (2020). Link to paper Link to arXiv preprint
“Optical properties of graphene quantum dots: the role of chiral symmetry”, Denis Basko, Ivan Duchemin, Xavier Blase, 2D Materials, 7, 025041 (2020). Link to paper Link to arXiv preprint
“Ab initio many-body GW correlations in the electronic structure of LaNiO2”, Valerio Olevano, Fabio Bernardini, Xavier Blase, and Andres Cano, Phys. Rev. B 101, 161102(R) (2020). Link to paper Link to arXiv
“Accurate prediction of the S1 excitation energy in solvated azobenzene derivatives via embedded orbital-tuned Bethe-Salpeter calculations”, Kshirsagar, Aseem Rajan; D’Avino, Gabriele; Blase, Xavier; Li, Jing; Poloni, Roberta, J. Chem. Theory Comput. 16, 2021 (2020). Link to paper Link to arXiv preprint
“Ground-state correlation energy of beryllium dimer by the Bethe-Salpeter equation”, by Jing Li, Ivan Duchemin, Xavier Blase, Valerio Olevano, SciPost Phys. 8, 020 (2020). Link to paper (Open Access)
2019
“Separable Resolution-of-the-Identity with All-Electron Gaussian Bases: Application to Cubic-scaling RPA”, Ivan Duchemin, Xavier Blase, J. Chem. Phys. 150, 174120 (2019). Link to paper Link to arXiv preprint
“Host dependence of the electron affinity of molecular dopants”, Jing Li, Ivan Duchemin, Otello Maria Roscioni, Pascal Friederich, Marie Anderson, Enrico Da Como, Gabriele Kociok-Köhn, Wolfgang Wenzel, Claudio Zannoni, David Beljonne, Xavier Blase, and Gabriele D’Avino, Materials Horizons 2019, 6, 107-114. Link to pdf (Open Access)
2018
“Size-dependent optical absorption of Cu2ZnSn(Se,S)4 quantum dot sensitizers from ab initio many-body methods”, Sabine Korbel, Paul Boulanger, Xavier Blase, Miguel A. L. Marques, Silvana Botti, Eur. Phys. J. B (2018) 91: 215. Link to manuscript
“The Bethe-Salpeter Formalism with Polarisable Continuum Embedding: Reconciling Linear-Response and State-Specific Features”, Ivan Duchemin, Ciro Achille Guido, Denis Jacquemin and Xavier Blase, Chem. Sci., 9, 4430 (2018). DOI: 10.1039/C8SC00529J. Link to pdf (Open Access)
“Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory”, Jing Li, Gabriele D’Avino, Ivan Duchemin, David Beljonne, Xavier Blase, Phys. Rev. B 97, 035108 (2018). Link to arXiv Link to paper (Open Access)
“The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges”, Xavier Blase, Ivan Duchemin, Denis Jacquemin, Chem. Soc. Rev. 47, 1022 (2018) Link to paper
2017
“Tuning Optical Properties of Dibenzochrysenes by Functionalization: A Many-Body Perturbation Theory Study”, Nicolas Dardenne , Roberto Cardia, Jing Li, Giuliano Malloci, Giancarlo Cappellini, Xavier Blase, Jean-Christophe Charlier, and Gian-Marco Rignanese, J. Phys. Chem. C, 2017, 121 (44), pp 24480-24488. Link to paper
“Correlated electron-hole mechanism for molecular doping in organic semiconductors”, Jing Li, Gabriele D’Avino, Anton Pershin, Denis Jacquemin, Ivan Duchemin, David Beljonne, Xavier Blase, Phys. Rev. Materials 1, 025602 (2017). [Editor’s choice] Link to paper (open access)
“Is the Bethe-Salpeter Formalism Accurate for Excitation Energies ? Comparisons with TD-DFT, CASPT2 and EOM-CCSD”, Denis Jacquemin, Ivan Duchemin, Xavier Blase, J. Phys. Chem. Lett. 8, 1524 (2017). Link to paper
“Helium Atom Excitations by the GW and Bethe-Salpeter Many-Body Formalism”, Jing Li, Markus Holzmann, Ivan Duchemin, Xavier Blase, Valerio Olevano, Phys. Rev. Lett. 118, 163001 (2017). Link to paper Link to arXiv
“Modelling the Photochrome-TiO2 Interface with Bethe-Salpeter and TD-DFT Methods”, Daniel Escudero, Ivan Duchemin, Xavier Blase, Denis Jacquemin, J. Phys. Chem. Lett. 8, 936 (2017). Link to paper
“Benchmark of Bethe-Salpeter for Triplet Excited-States”, Denis Jacquemin, Ivan Duchemin, Aymeric Blondel, and Xavier Blase, J. Chem. Theory Comput. 13 767 (2017). Link to paper
“Hybrid and constrained resolution-of-identity techniques for Coulomb integrals”, Ivan Duchemin, Jing Li, and Xavier Blase, J. Chem. Theor. Comput. 13 1199 (2017). Link to paper
“Bethe-Salpeter Study of Cationic Dyes: Comparisons with ADC(2) and TD-DFT”, Cloé Azarias, Ivan Duchemin, X. Blase, and Denis Jacquemin, J. Chem. Phys. 146, 034301 (2017). Link to paper
2016
“Assessment of the Accuracy of the Bethe-Salpeter (BSE/GW) Oscillator Strengths”, Denis Jacquemin, Ivan Duchemin, Aymeric Blondel, and Xavier Blase, J. Chem. Theory Comput. 12, 3969-3981 (2016). Link to paper
“Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids”, J. Li, G. D’Avino, I. Duchemin, D. Beljonne, and X. Blase, J. Phys. Chem. Lett. 7, 2814 (2016). Link to paper
“Electronic and optical properties of hexathiapentacene in the gas and crystal phases”, R. Cardia, G. Malloci, G.-M. Rignanese, X. Blase, E. Molteni, and G. Cappellini, Phys. Rev. B 93, 235132 (2016). Link to paper
“Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach”, Ivan Duchemin, Denis Jacquemin and Xavier Blase, J. Chem. Phys. 144, 164106 (2016). Link to paper
“GW and Bethe-Salpeter study of small water clusters”, X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, and I. Duchemin, J. Chem. Phys. 144, 034109 (2016). Link to paper
2015
“0-0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2 and BSE/GW formalisms for 80 Real-Life Compounds”, Jacquemin, Denis; Duchemin, Ivan; Blase, Xavier, J. Chem. Theory Comput., 2015, 11 (11), pp 5340-5359. Link to paper Paper on JCTC cover
“Ab initio Calculations of Open Cell Voltage in Li-ion Organic Radical Batteries”, Dardenne, Nicolas; Blase, Xavier; Hautier, Geoffroy; Charlier, Jean-Christophe; Rignanese, Gian-Marco, J. Phys. Chem. C J. Phys. Chem. C, 2015, 119 (41), pp 23373-23378.Link to paper
“Benchmarking the Bethe-Salpeter Formalism on a Standard Organic Molecular Set”, D. Jacquemin, I. Duchemin, X. Blase, J. Chem. Theory Comput. 2015, 11, pp 3290-3304. Open access ACS Editor’s choice. Link to paper
“Exploring approximations to the GW self-energy ionic gradients”, C. Faber, P. Boulanger, C. Attaccalite, E. Cannuccia, I. Duchemin, T. Deutsch, X. Blase, Phys. Rev. B 91, 155109 (2015). Link to paper
“Does excess energy assist photogeneration in an organic low band-gap solar cell?”, Tobias Hahn, Johannes Geiger, Xavier Blase, Ivan Duchemin, Dorota Niedzialek, Steffen Tscheuschner, David Beljonne, Anna Köhler and Heinz Bässler, Adv. Funct. Mater. 25 (8), pp. 1287-1295 (2015). Online Abstract
“First principles calculations of charge transfer excitations in polymer-fullerene complexes: Influence of excess energy”, D. Niedzialek, I. Duchemin, T. Branquinho de Queiroz, S. Osella, A. Rao, R. Friend, X. Blase, S. Kümmel, and D. Beljonne, Adv. Funct. Mater. 25 pp. 1287-1295 (2015). Online Abstract
2014
“Combining the Bethe-Salpeter Formalism with Time-Dependent DFT Excited-State Forces to Describe Optical Signatures: NBO Fluoroborates as Working Examples”, P. Boulanger, S. Chibani, B. Le Guennic, I. Duchemin, X. Blase, and D. Jacquemin, J. Chem. Theory Comput. 2014, 10 (10), pp 4548-4556. Link to paper
“Benchmark Many-Body GW and Bethe-Salpeter calculations for small transition-metal molecules”, S. Korbel, P. Boulanger, I. Duchemin, X. Blase, M.A.L. Marques, and S. Botti, J. Chem. Theory Comput. 2014, 10 (9), pp 3934-3943. Link to paper
“Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach”, P. Boulanger, D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. Theory Comput. 2014, 10 (3), pp 1212-1218. Link to paper
” Review article: Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green’s function formalisms”, C. Faber, P. Boulanger, C. Attaccalite, I. Duchemin, and X. Blase, “Special issue: Density functional theory across chemistry, physics and biology”, Phil. Trans. R. Soc. A. (2014) 372 . Link to Paper
2013
“Many-body Green’s function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide”, C. Faber, P. Boulanger, I. Duchemin, C. Attaccalite, and X. Blase, J. Chem. Phys. 139, 194308 (2013). Link to Paper
” Thickness dependence of the superconducting critical temperature in heavily doped Si:B epilayers”, A. Grockowiak, T. Klein, H. Cercellier, F. Lévy-Bertrand, X. Blase, J. Kacmarcik, T. Kociniewski, F. Chiodi, D. Débarre, G. Prudon, C. Dubois, and C. Marcenat, Phys. Rev. B 88, 064508 (2013). Link to Paper
“Resonant hot charge-transfer excitations in fullerene-porphyrin complexes: a many-body Bethe-Salpeter study”, I. Duchemin and X. Blase, Phys. Rev. B 87, 245412 (2013). Link to Paper
“Les semiconducteurs supraconducteurs du groupe IV” (review), T. Klein, X. Blase, C. Marcenat, C. Chapellier, and E. Bustarret, Reflets de la Physique, Société Française de Physique, numéro 33 (2013). Link to Paper
“Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube”, A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S.T. Purcell and L. Bocquet, Nature 494, 455 (2013). Link to Paper
2012
“Many-body Green’s function study of coumarins for dye-sensitized solar cells”, C. Faber, I. Duchemin, T. Deutsch, X. Blase, Phys. Rev. B, 86, 155315 (2012). Link to APS
“Short-range to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: A Bethe-Salpeter study”, I. Duchemin, T. Deutsch, X. Blase, Phys. Rev. Lett. 109, 167801 (2012). Link to APS arXiv:1204.2179
“Molecular Fingerprints in the Electronic Properties of Crystalline Organic Semiconductors: From Experiment to Theory”, S. Ciuchi, R.C. Hatch, H. Hochst, C. Faber, X. Blase, S. Fratini, Phys. Rev. Lett. 108, 256401 (2012). Link to APS
“Electron-phonon coupling and charge-transfer excitations in organic systems from many-body perturbation theory” (Invited review), C. Faber, I. Duchemin, T. Deutsch, C. Attaccalite, V. Olevano, X. Blase, J. Matter. Sci. 47, 7472 (2012). Springer link
2011
“Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach”, X. Blase, C. Attaccalite, Appl. Phys. Lett. 99, 171909 (2011). AIP link
“Electron-phonon coupling in the C60 fullerene within the many-body GW approach”, Carina Faber, Jonathan Laflamme Janssen, Michel Cote, E. Runge, X. Blase, Phys. Rev. B 84, 155104 (2011). APS link
“Superconductivity in doped clathrates, diamond and silicon”, Comptes rendus – Physique, French Academy of Science, special issue on “Superconductivity of strongly correlated systems”, X. Blase, 12, 584 (2011). Elsevier link
“First-principles GW calculations for DNA and RNA nucleobases”, Carina Faber, Claudio Attaccalite, V. Olevano, E. Runge, X. Blase, Phys. Rev. B 83, 115123 (2011). Link to APS
“First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications”, Xavier Blase, Claudio Attaccalite, Valerio Olevano, Phys. Rev. B 83, 115103 (2011). Link to APS
2010
“Conductance of functionalized nanotubes, graphene and nanowires: from ab initio to mesoscopic physics” (Invited review), X. Blase et al. physica status solidi (b) 247, 2962 (2010).
“Mobility gaps in disordered graphene-based materials: an ab initio-based tight-binding approach to mesoscopic transport”, B. Biel et al., physica status solidi (c) 7, 2628 (2010).
“Structural, Mechanical, and Superconducting Properties of Clathrates”, Chapter 6 in “Computer-Based Modeling of Novel Carbon Systems and Their Properties”, Series: Carbon Materials: Chemistry and Physics, Vol. 3, Colombo, Luciano; Fasolino, Annalisa (Eds.), 1st Edition., (2010). Editor link
“Radial breathing mode in silicon nanowires: An ab initio study”, by E. Bourgeois, M.-V. Fern\’andez-Serra, and X. Blase, Phys. Rev. B 81, 193410 (2010).
“Quantum Transport Properties of Chemically Functionalized Long Semiconducting Carbon Nanotubes”, Nano Research 3, 288 (2010).
“Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory”, R. Arenal, X. Blase, A. Loiseau, Advances in Physics, 59, 101-179 (2010).
2009
“Chemically-induced Mobility Gaps in Graphene Nanoribbons”, B. Biel, F. Triozon, X. Blase, S. Roche, Nano Lett. 9, 2725-2729 (2009). ACS link
“Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys”, Y. M. Niquet, D. Rideau, C. Tavernier, H. Jaouen, X. Blase, Phys. Rev. B 79, 245201 (2009). APS link
“Resonant spin-filtering in cobalt-decorated nanotubes”, X. Blase and R. Margine, Appl. Phys. Lett. 94, 173103 (2009). AIP link
“Electronic properties of boron-nitride and boron carbonitride nanotubes and related heterojunctions”, X. Blase and H. Chacham, chapter in “B-C-N Nanotubes and Related Nanotructures”, Editor: Yoke Khin Yap, Publisher: Springer Science+Business Media, LL. (in press). Springer link
“Electronic and transport properties of doped silicon nanowires”, M.-V. Fernandez-Serra and X. Blase, chapter 2 in “Handbook of Nanoscience and Nanotechnology”, volume 1, Springer (2009).
“Cluster assembled silicon networks”, P. Melinon, X. Blase, A. San Miguel, A. Perez, In “Nanosilicon”, Ed. V. Kumar, Elsevier, Amsterdam, september 2007, pp. 79-113.
“Low dimensional quantum transport properties of chemically-disordered carbon nanotubes: from weak to strong localization regime (Review paper)”, R. Avriller, S. Roche, F. Triozon, X. Blase, S. Latil, Modern Physics Letter B vol. 21. No. 29, 1955-1982 (2007).
2006
“High pressure synthesis and properties of intercalated silicon clathrates”, P. Toulemonde, A. San Miguel, A. Merlen, R. Viennois, S. Le Floch, Ch. Adessi, X. Blase, J.L. Tholence, Jo. Phys. Chem. Solids 67, 1117-1121 (2006) (proceedings ISIC13, Clermont-Ferrand, June 06-09, 2005, France).
“Reduced backscattering in potassium doped nanotubes”, Ch. Adessi, S. Roche and X. Blase, Phys. Rev. B 73, 125414 (2006).
“Electronic structure of semiconducting nanowires”, Y.M. Niquet, A. Lherbier, N.H. Quang, M.V. Fernandez-Serra, X. Blase, Ch. Delerue, Phys. Rev. B 73, 165319 (2006).
“Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations”, E. Bourgeois, E. Bustarret, P. Achatz, F. Omnes, X. Blase, Phys. Rev. B 74, 094509 (2006).
“Chemical disorder strength in carbon nanotubes: Magnetic tuning of quantum transport regimes”, R. Avriller, S. Latil, F. Triozon, X. Blase, S. Roche, Phys Rev B (Rap. Comm.) 74, 121406(R)(2006). APS link
“Conductance, surface traps and passivation in doped silicon nanowires”, M.V. Fernandez-Serra, Ch. Adessi, X. Blase, Nano Letters 6, 2674-2678 (2006).
“Electronic properties”, F. Ducastelle, X.Blase, J.-M. Bonnard, J.-C. Charlier, et al., in “Understanding nanotubes: from science to applications“, Lecture Notes in Physics (Springer-Verlag, Berlin, Heidelberg, 2005).
“Microscopic growth mechanisms”, X.Blase and J.-C. Charlier, in “Understanding nanotubes: from science to applications“, Lecture Notes in Physics (Springer-Verlag, Berlin, Heidelberg, New York, 2005).
“An analytical model for the thermal conductivity of silicon nanostructures”, P.~Chantrenne, J.L.~Barrat, X.~Blase, and J.D.~Gale, J. Appl. Phys. 97, 104318 (2005).
“Superconductivity in the (Ba_(1-x)Sr_x )_8 Si46 clathrates (x~0.75) : Experimental and ab initio investigation”, P. Toulemonde, Ch. Adessi, X. Blase, A. San Miguel, and J. L. Tholence, Phys. Rev. B 71, 094504 (2005).
2004
“Guest displacement in silicon clathrates”, Florent Tournus, Bruno Masenelli, Patrice Mélinon, Damien Connétable, Xavier Blase, Anne Marie Flank, Pierre Lagarde, Christian Cros, and Michel Pouchard, Phys. Rev. B 69, 035208 (2004).
“Electronic and superconducting properties of silicon and carbon clathrates”, D. Connétable and X. Blase, Applied Surface Science, 226 (1-3): 289-297 (MAR 15 2004).
“Nanostructured films from (C_60)_nSi_m clusters”, B. Masenelli, F. Tournus, P. Mélinon, X. Blase, A. Pérez, M. Pellarin, M. Broyer, Applied Surface Science, 226 (1-3): 226-230 (MAR 15 2004).
“Semiconductor-metal transitions in liquid In1-xSex alloys: a study of a concentration induced transition”, G. Ferlat, A. San Miguel, H. Xu, A. Aouizerat, X. Blase, V. Munoz-Sanjosé, J. Zuniga, Phys. Rev. B 69, 155202 (2004).
“Step barrier for gold clusters diffusing on graphite: an ab initio study”, P. jensen and X. Blase, Phys. Rev. B 70, 165402 (2004).
“First-principles study of gold adsorption and diffusion on graphite”, P. Jensen, X. Blase and P. Ordejón, Surface Science 564, 173 (2004).
“Si-C-60 bond in cluster-based materials”, Masenelli B, Tournus F, Melinon P, Blase X, Perez A, Pellarin M, Broyer M, Flank AM, Lagarde P., SURFACE SCIENCE 532: 875-879 JUN 10 (2003).
2002
“Carbon Cage-Like Materials as Potential Low Work Function Metallic Compounds”,
V.Timoshevskii, D.Connétable, X.Blase, Appl.Phys.Lett. 80, 1385 (2002).
“Si-C bonding in films prepared by heterofullerene deposition”, P. Mélinon, X. Blase, P. Kéghélian, A. Perez et al, Phys. Rev. B 65, 125321 (2002)
“Pressure stability and low compressibility of intercalated cage-like materials: the case of silicon clathrates”,
A.San-Miguel, P.Mélinon, D.Connétable, X.Blase et al, Phys. Rev. B 65, 054109 (2002).
“Bridging C60 by silicon: towards non-Van der Waals C60 based materials”,
F. Tournus, B. Massenelli, P. Melinon, X. Blase et al, Phys. Rev. B 65, 165417 (2002).
“SiC bonding in films prepared by heterofullerenes deposition “,
P.Melinon, X.Blase, P. Keghelian, A Perez et al, Phys. Rev. B 65, 125321 (2002).
“N-doping and coalescence of carbon-nanotubes: synthesis and electronic properties”,
M.Terrones, P.M.Ajayan, F.Banhart, X.Blase et al, Appl. Phys. A 74, 1-7 (2002).
“GW study of the Metal-Insulator Transition of bcc Hydrogen”, J.-L. Li, G.-M. Rignanese, E. Chang, X. Blase, S.G. Louie, Phys. Rev. B 66, 035102 (2002).
“Structural and electronic properties of solid Indium Selenide under pressure from ab-initio studies”, G.Ferlat, H.Xu, V.Timoshevskii, X.Blase, Phys. Rev. 66, 085210 (2002).
“Catalysis of nanotube plasticity under strain”, P. Jensen, J. Gale, X.Blase, Phys. Rev. B 66, 193403 (2002).
“Ab initio study of C60-silicon clusters”, B.Masenelli, F.Tournus, P.Melinon, A.Perez, X.Blase, J. Chem. Phys. 117, 10627 (2002).
“First-principles theoretical modeling of nanotube growth”,
Charlier, J.-C.; Blase, X.; de Vita, A.; Car, R. NATO Asi Series E Applied Sciences, 2001, vol. 372, pp. 149-170 (Boston; Kluwer Academic Publishers)
“Quasiparticle band structure of lanthanum hydride”,
E.K. Chang, X.Blase and S.G. Louie, Phys. Rev. B 64, 155108 (2001).
“Identification of electron donor states in N-doped carbon nanotubes”,
R.Czrew, M.Terrones, J.-C.Charlier, X. Blase et al, Nano. Lett. 1, 457-460 (2001).
“Advances on the growth and properties of N- and B-doped carbon nanotubes”, M.Terrones, P.M.Ajayan, X.Blase, W.Blau et al, in Electronic Properties of Molecular Nanostructures, XV International Winterschool/Euroconference Kirchberg, Austria 2001, Eds. Kuzmany/Fink/Mehring/Roth, American Institute of Physics, pp.212-216 (2001).
2000
“Electronic structure of the ideally H-terminated Si(111)-(1×1) surface.”
S. Gallego, J. Avila, M. Martin, X. Blase, A. Taleb, P. Dumas, M.C. Asensio,
Phys. Rev. B 61, 12628 (2000).
“Photolysis experiments on SiC mixed clusters: from silicon carbide clusters to silicon-doped fullerenes”, C. Ray, M. Pellarin, J.L. Lerme, J.L. Vialle, M. Broyer, X. Blase, P. Melinon, P. Keghelian, and A. Perez, J. Chem. Phys. 110, 6927 (1999).
“Production and stability of silicon-doped heterofullerenes.’,
Pellarin, M; Ray, C; Lerme, J; Vialle, JL; and others, EUROPEAN PHYSICAL JOURNAL D, 1999 DEC, V9 N1-4 SI:49-54.
“Electronic signature of the pentagonal rings in silicon clathrate phases: Comparison with cluster-assembled films”, P. Melinon, P. Keghelian, X. Blase, J. Le Brusc, A. Perez, E. Reny, C. Cros, and M. Pouchard, Phys. Rev. B 58, 12590 (1998).
“Theoretical models for the optical properties of clusters and nanostructures”, A. Rubio, J.A. Alonso, X. Blase, and S.G. Louie, International Journal of Modern Physics B, V11 N23, 2727-2776 (1997).
“Boron-doped nanotubes density of states from tunneling spectroscopy”, D.L. Carroll, P. Kinlen, S. Raman, P. Redlich, M. Ruhle, X. Blase, J.-C. Charlier, S. Curran, S. Roth, and P.M. Ajayan, Molecular Nanostructures (Ed. H. Kuzmany, J. Fink, M. Mehring & S. Roth, World Scientific Publishing and Co. Pte. Ltd., London), 477-481 (1997).
1996
“Theoretical study of one-dimensional chains of metal atoms in nanotubes”, A. Rubio, Y. Miyamoto, X. Blase, M. L. Cohen and S. G. Louie, Phys. Rev B 53, 4023 (1996).
“Evidence for BxCyNz nanotubes”, Z. Weng-Sieh, K. Cherrey, N. S. Chopra, X. Blase, Y. Miyamoto, A. Rubio, S. G. Louie, M. L. Cohen, A. Zettl and R. Gronsky, Phys. Rev. B 51, 11229 (1995).
“Quasiparticle band structure of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS,CdSe, CdTe”, O. Zakharov, A. Rubio, X. Blase, M.L. Cohen and S.G. Louie, Phys. Rev. B. 50, 10780 (1994).
“Quasiparticle band structure of hexagonal boron-nitride and related systems”, X. Blase, A. Rubio, S.G. Louie and M.L. Cohen, Phys. Rev. B. 51, 6868 (1994).