Quasiparticles dynamics often governs the ultimate performances of superconducting devices. Out-of-equilibrium superconductivity has therefore attracted a long-standing interest. In order to probe the microscopic mechanisms at play, injection of quasiparticles with the help of a tunnel junction has already been employed at the mesoscopic scale, thanks to the outstanding progress in modern nanotechnology. However, lithographed tunnel junctions lack spatial resolution and do not allow to vary the bias voltage and the tunneling current independently. In order to overcome these two limitations the novelty of this PhD work is to use a Scanning Tunneling Microscope (STM) working at very low temperature (50 mK) to tune the critical current of superconducting nanowires as a function of the tip position and the tunneling set-point.
In thin niobium nanowires capped with gold, we measured a drastic reduction of the critical current by injecting a tunnelling current of quasiparticles that is six orders of magnitude lower. We interpret this observation as a local increase of the electronic temperature. We also suggest that the same mechanism is at play in superconducting Field Effect Transistors (SuFETs). The critical current depends strongly on the injection position along the nanowire, the injection rate and the energy of the quasiparticles. At large energies compared to the superconducting gap, the reduction of the critical current is controlled by the injected power. Our measurements show that the diffusion of heat by quasiparticles and phonons explains the injection power and position dependencies, and allow to probe the electron-phonon coupling in our samples. By contrast, when reducing the energy at constant injection rate, the critical current sharply decreases close to the gap energy, signalling the breakdown of the quasi-equilibrium model. We explain this behaviour as a non Fermi Dirac out of equilibrium energy distribution of the quasiparticles, and this allows to estimate the relaxation rate of the quasiparticles. We also probed the spectral properties of current carrying nanowires, and induced magnetic vortices to create spatial variations in the density of states. We thus evidenced the effect of quasiparticle trapping by vortices at the nanometer scale, which is of particular interest since until now the only experiments that allow investigating the dynamics of an inhomogeneous superconducting system necessarily probed a macroscopic volume of the superconductor, rendering explanation of the measurements in terms of the inhomogeneity difficult.
Therefore, this experimental work opens a new perspective to investigate the competition between diffusion, relaxation and recombination of quasiparticles in strongly disordered superconductors with various applications such as in photon detection and superconducting electronics.