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In the field of cavity nano-optomechanics, the nanoresonator-in-the-middle approach consists in
inserting a sub-wavelength sized deformable resonator, here a nanowire, in the small mode volume
of a fiber microcavity. Internal resonances in the nanowire enhance the light nanowire interac-
tion which provide giant coupling strengthes -sufficient to enter the single photon regime of cavity
optomechanics- at the condition to precisely position the nanowire within the cavity field. Here
we expose a theoretical description that combines an analytical formulation of the Mie-scattering
of the intracavity light by the nanowire and an input-output formalism describing the dynamics of
the intracavity optical eigenmodes. We investigate both facets of the optomechanical interaction
describing the position dependent parametric and dissipative optomechanical coupling strengths, as
well as the optomechanical force field experienced by the nanowire. We find a quantitative agreement
with recent experimental realization. We discuss the specific phenomenology of the optomechanical
interaction which acquires a vectorial character since the nanowire can identically vibrate along both
transverse directions: the optomechanical force field presents a non-zero rotational, while anomalous
positive cavity shifts are expected. Taking advantage of the large Kerr-like non linearity, this work
opens perspectives in the field of quantum optics with nanoresonator with for instance broadband
squeezing of the outgoing cavity fields close to the single photon level.
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INTRODUCTION

The field of optomechanics investigates the paramet-
ric coupling between the motional degrees of freedom of a
resonator and a light field. The interaction first describes
the impact of the resonator motion on the optical field
which is usually enhanced using a high finesse optical cav-
ity, and reciprocally, the intra-cavity field exerts an opti-
cal force on the resonator. This constitutes both facets of
the optomechanical interaction. Such systems have been
subject to impressive developments in the last decades [1]
enabling ultra sensitive optical readout of the resonator
displacement or the manipulation of the mechanical sys-
tem through optical forces. In that context, quantum non
demolition (QND) measurements of the intra-cavity shot
noise [2, 3], generation of non-classical states of both res-
onator and electromagnetic fields [3–9], or ground state
cooling of the macroscopic oscillator [10, 11] were demon-
strated.

However, the optomechanical coupling strength per
photon remained generally relatively weak and in most
experiments it was necessary to strongly pump the cav-
ity mode to observe or exploit the optical back-action.
It leads to a situation where the optomechanical interac-
tion can be seen as linearized around a mean intra-cavity
photon number, then preventing the observation of its
intrinsic Kerr-like non linearity [13] (due to the intensity
dependence of the optical phase accumulated in the cav-
ity) whose relative photon number sensitivity is enhanced
at low photon number.
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FIG. 1. (a) Optomechanical system consisting of a suspended
nanowire inserted in the middle of a high finesse fiber based
Fabry-Pérot micro-cavity. Details on an experimental real-
ization, shown in the photograph, can be found in ref. [12].
(b) SEM image of a suspended nanowire attached to a sharp
tungsten tip. (c) White light images of a conical nanowire
obtained for perpendicular and parallel light polarisations
(white arrow). Its reflected color is governed by internal Mie
resonances, which will have a large impact on its optomechan-
ical coupling to the cavity field.

To circumvent this issue and guarantee both large field
enhancement and ultra-high sensitivity mechanical res-
onator, a natural strategy consists in decoupling the op-
tical and mechanical components of the system. It has
emerged in the pioneering membrane in the middle exper-
iments [14] and, in the last decade, several other strate-
gies have been implemented to insert a mechanical res-
onator (ultra thin membrane, nanorod, carbon nanotube
or nanogram-scale ”trampoline”) in the middle of an op-
tical cavity [2, 14–23].

Nevertheless, nanostring oscillator coupled to toroidal
optical microresonator [24–27], photonic crystal
nanobeam [28, 29] or levitated particles [30] have
also provided experimental platforms with the required
characteristics. These realizations have demonstrated
ultra high displacement sensitivities [21, 24, 26, 28, 31],
an ability to cool down the oscillator close to its me-
chanical ground state [19, 22, 26, 30], or the possibility
to observe correlations between imprecision (shot noise)
and back action (radiation pressure force) of a meter
laser [27]. They have also been used to perform QND
measurement of the intra-cavity photon fluctuations [2]
and the great tunability of the optomechanical interac-
tion also opened the road to QND measurements of the
mechanical phonon number [14, 16, 29]. Still, optome-
chanical interaction at the single photon scale remains
out of range, preventing the observation of original and
unexplored phenomena [32–41] among which one of the
long standing goal of optomechanics, the single photon
blockade regime [34] where a single intra-cavity photon
shifts the optical resonance by more than its linewidth.
It is worth mentioning that up to now, only atom-based
analogue optomechanical experiments [42, 43] could
access such a regime, while recent developments with
highly deformable photonic crystals [28, 29] or tram-
poline resonators [20] appear to be promising in that
perspective. More recently, nanowires in the middle
of a fiber optical cavity have shown their potential
allowing to perform optomechanical measurements close
to the single photon regime [12], and we present here
the extended associated theoretical description of the
system.

Moreover, the use of sub-wavelength-sized mechani-
cal resonators enriches the phenomenology of the op-
tomechanical interaction, and a quantitative modeling
allowing to overpass the one dimensional approxima-
tion [44, 45] is still lacking for those multidimensional
systems. The computation of the optical forces also re-
quires a precise knowledge of the intra-cavity field sur-
rounding the resonators making essential to go beyond
the dipolar approximation when calculating the field dif-
fused by the scatterer which was in general treated in the
Rayleigh regime for cavity optomechanics [46–52] (at the
exception of ref. [53]).

In this paper we model the optomechanical system
made of a suspended nanowire inserted in a high finesse
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Fabry-Pérot micro-cavity [12] as shown Fig. 1. The ultra
high force sensitivity of the nanowires [54–63], their sub-
wavelength sized diameter and their strong interaction
with light [64], associated to the small mode volume of
the fiber Fabry-Pérot micro-cavity [65, 66], provides large
optomechanical coupling strengths and an ideal configu-
ration to finely study the two facets of the optomechan-
ical interaction. Combining Mie theory [64] to properly
describe the scattering of the light by the nanowire and
a transfer matrix formalism [20, 44, 67, 68] to describe
the propagation of the intra-cavity fields, we expose here
the mean field solutions of the model giving access to the
outgoing and intra-cavity fields for varying nanowire ge-
ometries and positions within the micro-cavity mode. We
first present a description taking into account the ensem-
ble of the cavity modes cross coupled by the nanowire
scattering and then restrict our study to the situation
where only the fundamental cavity mode is efficiently
pumped, the scattering towards the other modes being
treated as a loss channel. Our work highlights the exis-
tence of configurations where the single photon optome-
chanical coupling strength becomes larger than the vi-
brational frequency of the nanowire by several order of
magnitude, leading to a situation where a single photon
in the cavity displaces the nanowire by much more than
its zero point fluctuations. The recoil exerted by a single
intra-cavity photon is even shown at cryogenic temper-
ature to overpass the residual thermal position fluctua-
tions of the nanowire, thus motivating the development
of such experimental configuration [69].

Additionally, this system allows to spatially map the
intra-cavity field through the modifications of the output
fields induced by the nanowire but also through the opti-
cal force applied on the nanowire, which is derived from
the Maxwell’s stress tensor formalism. This analysis re-
veals the existence of trapping and anti-trapping loca-
tions within the intra-cavity field positions and predicts
the emergence of a non-conservative, or rotational struc-
ture of the intracavity force field which could be analysed
in a future work using the 2D force field sensor capacity
of the nanowires [12, 62]. Moreover, it is important to
stress that our model presents a very good quantitative
agreement with the experimental work of ref. [12] for both
optomechanical interaction strength and optical forces.

Finally, we show that the system possesses a near unity
single photon parametric cooperativity opening the road
to the observation of Kerr-like non linearity and broad-
band optomechanical squeezing at the ultra low intra-
cavity photon level [13, 70]. Furthermore, QND measure-
ment of the intra-cavity field intensity fluctuations [2]
below one photon seems achievable, opening the road
towards the investigation of a possible deviation to the
mean field approximation, where the fluctuations in the
cavity mode have a comparable impact on the oscillator
dynamics as the mean field. The input-output formal-
ism implemented with the Mie formalism, should also be

suitable to investigate the Casimir forces in this original
configuration.

The paper is organized as follow, section details the
model used to treat the interaction between the intra-
cavity field and the nanowire, leading to the determi-
nation of the spatial dependence of the cross coupling
coefficients from one cavity mode towards another, in-
duced by the nanowire scattering. Section presents the
results of the transfer matrix formalism applied on the
complete system highlighting the strong optomechanical
interaction achieved. The impact of the temperature is
discussed as well as the possibility to reach regimes of
strong optomechanical interaction at the single photon
scale. Section discusses the two dimensions characteriza-
tion of the intra-cavity fields and computes the vectorial
optomechanical force applied on the nanowire. Finally,
section summarizes the main results of this work and
presents the perspectives.

MODELING A NANOWIRE IN THE MIDDLE OF
AN OPTICAL CAVITY

In this Section we derive the transfer matrices of the
different elements of the system (cavity mirrors, propa-
gation in the cavity, nanowire) that will be used in Sec-
tion for the complete description of the nanowire in the
middle (NIM) configuration. For that purpose, the light-
nanowire interaction will be consider with a free space
field whose characteristics are the ones of the intra-cavity
field. In particular, the geometrical parameters of the
intra-cavity field (Rayleigh length, waist, curvature ra-
dius) will be fully determined by the cavity parameters
(length, mirrors geometry, laser wavelength).

Generalities about light-nanowire interaction

We consider the optomechanical system depicted in
Fig. 1 consisting of a suspended nanowire inserted in
the middle of a high finesse fiber based Fabry-Pérot
micro-cavity (for experimental details see ref. [12]). The
nanowire is modelled as an infinite lossless dielectric
(non-magnetic) cylinder of radius Rnw and refractive in-
dex n (around 2.7) collinear to the y axis and located
at r0 = x0 ex + z0 ez. This relatively large refractive in-
dex causes that for the radius employed, ranging from 25
to 250 nm, several arches of the EM field can be local-
ized inside the nanowire (internal resonances), produc-
ing a multipolar scattering regime, which spectrally and
geometrically structures and possibly allows to enhance
the light-nanowire interaction. The light scattering by
the nanowire is treated in the framework of the Mie for-
malism (see Appendix and [64]) using the cylindrical
coordinates (r, ϕ, y) centred at the nanowire position r0

(Fig. 2(a)). This cylindrical description makes that our
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model will be suited for a nanowire sufficiently inserted
in the optical mode (in practice the extremity effects dis-
appear for vertical insertions larger than ∼ 2µm). For
plane wave incidence (wavevector ki), we consider the
two possible orthogonal polarization states of the inci-
dent light: electric field polarized parallel or perpendicu-
lar to the incidence plane (ki, ey). For an amplitude E0

at the nanowire position and an incident wavevector in
the (xz) plane, the scattered fields for both polarizations
are

E
‖
scat(r)=E0

+∞∑
l=−∞

(−i)l e−ilφib‖lH
(1)
l (kr) eilϕ ey, (1a)

E⊥scat(r)=E0 i

+∞∑
l=−∞

(−i)l e−ilφia⊥l
[
il
H

(1)
l (kr)

kr
er

−H(1)′

l (kr) eϕ

]
eilϕ, (1b)

where the coefficients a⊥l and b
‖
l are imposed by the

boundary conditions and given in Appendix . They de-
pend on the nanowire properties (radius and refractive
index) as well as on the incident wavelength. In these
expressions, φi characterizes the direction of ki in the

(xz) plane, H
(1)
l is the Hankel function of the first kind

and the prime denotes a derivative with respect to the
argument. Here we have chosen the incident polarization

vectors to be e
‖
P = −ey and e⊥P = ex.

From the knowledge of the scattered electric and mag-
netic fields we obtain (Appendix ) for a single incident
wavevector ki the angular dependence of the emission
diagram as shown Fig. 2(cd) for different nanowire radii
and for both polarizations. Moreover, for a given half
optical collection angle θcol we define the reflected, trans-
mitted and scattered 1D cross-sections caracterizing the
amount of light scattered in the corresponding channels.
These quantities are given Fig. 2(cd) in the case of a nu-
merical aperture NA = sin θcol = 0.15 corresponding to
the situation described in the following and for compari-
son, for a NA = 0.7 corresponding to the situation where
a microscope objective is used to collect the scattered
light. As expected from the Mie resonances, the cross-
sections strongly depends on the nanowire radius and we
will see that the choice of the ratio RNW/λ will have a
strong impact on the optomechanical coupling between
the nanowire and the cavity mode.

Optical cavity field

The optical cavity is assumed to be made of two spher-
ical mirrors of curvature radii Rc located at z = ±Lcav/2.
They are treated as lossless beam splitters of reflection
and transmission coefficients RL,R and TL,R (intensity
related) satisfying RL,R+TL,R = 1 where the index L,R

stands for the left and right mirrors. For RL,R = 0.994
(corresponding to the experimental situation of ref. [12]
where λ = 770 nm), the finesse of the empty cavity is
F0 = 522 and the settling time of the intra-cavity field is
of the order of 10 ps which justifies the use of the slowly
varying envelope approximation in the following. A posi-
tion in the cavity volume is characterized by it Cartesian
coordinates (x, y, z) using an origin located at the cen-
ter of the cavity. The cavity is pumped from the left side
with a fixed laser wavelength λ and for the geometry con-
sidered (Rc = 28µm), the waist and Rayleigh length of
the intra-cavity field are w0 = 1.7µm and zR = 11.5µm,
corresponding to a weakly diverging beam for a cavity
length of the order of 10µm. For this reason, we work
in the framework of the paraxial approximation allow-
ing to treat easily the polarization effects. However, we
will see that a more accurate description of the beam
polarization structure is necessary to obtain a vectorial
expression of the optical force applied by the intra-cavity
field on the nanowire. Finally, we employ a mean field
description sufficient to characterize the two facets of the
optomechanical coupling. We note that the same input-
output formalism can also be used to describe the field
fluctuations, but this will be the topic of future work.

Hermite-Gaussian modes

We assume a spherical profile of the cavity mirrors
leading to Gaussian cavity modes. These modes are given
in the paraxial approximation by the set of Hermite-
Gaussian beams [71], defined for propagation along ±z
as, E(±,p)

nx,ny (r) = E
(±)
nx,ny (r) e

(p)
P with

E(±)
nx,ny (r) = ρnx,ny (r) e±iϕnx,ny (r), (2a)

ρnx,ny (r)=Anx,ny0

w0

w(z)
e
−

r2
⊥

w2(z) Hnx

(√
2x

w(z)

)
Hny

(√
2y

w(z)

)
,

(2b)

ϕnx,ny (r) = kz − (1 + nx + ny)Ψ(z) + k
r2
⊥

2R(z)
, (2c)

where ρnx,ny and ϕnx,ny are the amplitude and phase of

the field, {nx, ny} ∈ N2, r⊥ = x ex + y ey and e
(p)
P is the

polarization vector standing in the (xy) plane. Because of
the symmetry of the problem, we will consider in the fol-
lowing two cases associated to two different polarizations
of the Hermite-Gaussian modes, the parallel case where

e
‖
P = −ey and the perpendicular case where e⊥P = ex. In

Eq. (2), Hn(x) = (−1)n ex
2

dn(e−x
2

)/dxn is the Hermite
polynomial of order n, Ψ the Gouy phase of the beam,
R the curvature radius of the wavefronts, and w char-
acterizes the transverse spreading (w0 being the waist).

Their expressions are given by w(z) = w0

√
1 + (z/zR)

2
,
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Ψ(z) = arctan (z/zR) and R(z) = z2
R/z + z, where

zR = πw2
0/λ is the Rayleigh length defining the distance

over which the beam can be considered as non diverging.
The set of Hermite-Gaussian modes forms a complete

orthogonal basis of solution of the Helmholtz equation in
the paraxial approximation [71], i.e. any two-dimensional
complex light field can be obtained as a superposition of
Hermite Gaussian beams. The scalar product associated
to this basis for ±z propagation is〈

E(±,p)
px,py |E

(±,p′)
nx,ny

〉
≡ δp,p′

∫∫
S

d2rE(±)
nx,ny (r) E(±)

px,py

∗
(r)

= δp,p′ δnx,px δny,py , (3)

where the integration surface S can be any surface hav-
ing the z axis as symmetry axis and a collection angle
of π, i.e. collecting the whole field in the transverse di-
rection. The eigenmodes’s normalization factors Anx,ny0

appearing in (2) are derived with the above scalar prod-
uct. In the following, we will note (±, nx, ny, p) a beam
propagating along ±z in the (nx, ny) Hermite-Gaussian
mode with polarization p.

Hermite-Gaussian modes propagation

As mentioned before, in an optical cavity the geomet-
rical parameters of the Hermite-Gaussian modes are fully
constrained [72], the Rayleigh length being set to zR =
(Lcav/2)

√
(1 + g)/(1− g) with g = 1−Lcav/Rc. As such,

the knowledge of the field strength at one position can be
used to deduce its value at any other position. This al-
lows, for a beam in the (±, nx, ny, p) mode, to introduced

the reduced field F
(±,p)
nx,ny (z) = A±e±iϕ

nx,ny
0 (z) defined as

E(±,p)(r) = ρnx,ny (r⊥, z)e
±ik r2⊥

2R(z) F
(±,p)
nx,ny (z) e

(p)
P with A±

the complex amplitude of the field and ϕ
nx,ny
0 (z) =

kz − (1 + nx + ny)Ψ(z).
As a consequence, we restrict the field propagation

analysis to the one of the reduced field. In the slowly
varying envelope approximation, the propagation (in vac-
uum) between two positions z1 and z2 is given by(

F
(+,p)
nx,ny (z2)

F
(−,p)
nx,ny (z2)

)
= Mnx,ny

z1,z2

(
F

(+,p)
nx,ny (z1)

F
(−,p)
nx,ny (z1)

)
, (4)

where

Mnx,ny
z1,z2 =

(
ei[ϕ

nx,ny
0 (z2)−ϕnx,ny0 (z1)] 0

0 e−i[ϕ
nx,ny
0 (z2)−ϕnx,ny0 (z1)]

)
.

(5)

Field interaction with cavity mirrors

We now consider a cavity mirror located at position zM

with real reflection and transmission coefficients r and t

verifying r2 + t2 = 1. It is possible for any Hermite-
Gaussian mode to express the reduced fields at the right
of the mirror in terms of the reduced fields at its left,

(
F

(+)
R (zM)

F
(−)
R (zM)

)
= MBS

(
F

(+)
L (zM)

F
(−)
L (zM)

)
, (6)

with MBS given by

MBS =
1

t

(
1 ηr
ηr 1

)
, (7)

where the index R and L indicate the side of the mirror
on which the field is given. Here we have omitted the
mode and polarization labels for simplicity. The exis-
tence of the parameters η = ±1 is due to a phase choice,
consequence of the energy conservation in the beam split-
ter.

Cavity - Nanowire interaction

Presentation of the formalism

We now treat the interaction between the nanowire
and the optical cavity modes, the aim being to obtain
the transfer matrix of the nanowire inside the cavity. For
that purpose, we first compute in section the nanowire-
induced reflection and transmission coefficients from one
Hermite-Gaussian mode impinging on the nanowire to
another one. The incoming field produces a scattered
field which is expanded on the set of Hermite-Gaussian
modes propagating along ±z. Then, using the fact that
the intra-cavity field is fully characterized by the value of
the reduced field on the cavity axis (see ), the reflection
and transmission coefficient are defined as the ratio of
the outgoing and incoming reduced fields. Note that the
scattered coefficients are computed between the propaga-
tive modes of the cavity since they are the relevant ones
to describe how the nanowire impacts the intra-cavity
field. However in the following when calculating optical
forces, we will take into account the complete electro-
magnetic field surrounding the nanowire as given by the
Mie theory.

When the nanowire is inserted in the cavity at position
r0, it is simultaneously illuminated by the forward and
backward propagating fields, each producing a scattered
field. In the matrix formalism, the nanowire will act as
a scattering element which will cross-couple the differ-
ent transverse modes propagating along the 2 directions
and for the 2 polarizations, leading to a 4N ×4N dimen-
sion scattering matrix if one restricts the analysis to the
first N th transverse modes. For the scattering from the
modes (+, nx, ny) and (−, n′x, n′y) towards (+, px, py) and
(−, p′x, p′y) for all possible polarizations, we have
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FIG. 2. (a) Infinite cylinder under single plane wave illumination. The incidence angle in the (xz) plane is noted φi and the
polarization can be either parallel or perpendicular to the cylinder axis. (b) Scheme of the configuration used to compute
the reflection and transmission coefficients of a Gaussian beam on a nanowire. An incident beam Einc generates a scattered
field Escat evaluated on the cavity mirror surfaces SL,R using the Mie formalism. The coefficients are obtained by considering
that the effective reflected and transmitted fields in a given mode are the result of the scattered field projection on this mode.
(c-d) Reflection, transmission and scattered 1D cross-sections as function of the cylinder radius for an excitation wavelength
λ = 770 nm. The solid lines are associated to a numerical aperture of 0.15 corresponding to the situation described in this
paper while the dashed line is associated to a numerical aperture of 0.7 corresponding to the situation where a usual microscope
objective is used to collect the scattered light. Inset: angular emission diagrams for different cylinder radii. The coloured areas
highlight the collection angles associated to the two numerical apertures. (e) Transverse dependence of the reflection coefficient
of an SiC nanowire in the fundamental Hermite-Gaussian mode (RNW = 65 nm, λ = 770 nm, w0 = 1.7µm), see text. (f-g)
Transmission and reflection coefficients for a nanowire located at r0 = 0. (h) Amplitude of the nanowire induced cavity losses
coefficients. In e, f, g and h, the black lines correspond to the complete description of the scattered field while the coloured
lines are the result of the approximated method (see text).


F

(+,‖)
px,py (z0)

F
(−,‖)
p′x,p

′
y

(z0)

F
(+,⊥)
px,py (z0)

F
(−,⊥)
p′x,p

′
y

(z0)

 = Snw(r0)


F

(+,‖)
nx,ny (z0)

F
(−,‖)
n′x,n

′
y
(z0)

F
(+,⊥)
nx,ny (z0)

F
(−,⊥)
n′x,n

′
y

(z0)

 , (8)

with Snw given by

Snw(r0) =
C

(+)
t

px,py ‖
nx,ny ‖ C

(−)
r

px,py ‖
n′x,n

′
y ‖ C

(+)
t

px,py ‖
nx,ny ⊥ C

(−)
r

px,py ‖
n′x,n

′
y ⊥

C
(+)
r

p′x,p
′
y ‖

nx,ny ‖ C
(−)
t

p′x,p
′
y ‖

n′x,n
′
y ‖

C
(+)
r

p′x,p
′
y ‖

nx,ny ⊥ C
(−)
t

p′x,p
′
y ‖

n′x,n
′
y ⊥

C
(+)
t

px,py ⊥
nx,ny ‖ C

(−)
r

px,py ⊥
n′x,n

′
y ‖ C

(+)
t

px,py ⊥
nx,ny ⊥ C

(−)
r

px,py ⊥
n′x,n

′
y ⊥

C
(+)
r

p′x,p
′
y ⊥

nx,ny ‖ C
(−)
t

p′x,p
′
y ⊥

n′x,n
′
y ‖

C
(+)
r

p′x,p
′
y ⊥

nx,ny ⊥ C
(−)
t

p′x,p
′
y ⊥

n′x,n
′
y ⊥

 ,

(9)

where C
(±)
r,t

qx,qy (p′)

mx,my (p)
are the reflection and transmission

coefficient from the mode (mx,my, p) towards (qx, qy, p
′),

the upper index (±) indicating the direction of the inci-
dent beam on the nanowire. For simplification, we have
omitted the different indexes in Snw and the position de-
pendence of the coefficients.

Moreover, if one assumes (i) that the cavity modes are
non-degenerated, so that one can pump the cavity close
to a single optical mode, the other being far from res-
onance, (ii) the cross coupling induced by the nanowire
does not bring a transverse mode close to being at reso-
nance with the pump laser, (iii) the polarization eigenba-
sis of the cavity is aligned with the nanowire orientation
so that there is no cross coupling between modes of dif-
ferent polarizations (see later), then one can restrict the
analysis to the situation where a single cavity mode re-
mains resonant inside the cavity. In that situation, the
nanowire-induced cross coupling to the other transverse
modes can be viewed as a loss channel, while the struc-
ture of the cavity propagation matrix can be restricted to
a single family of transverse mode, of dimension 2 only
for each polarizations. This will be the subject of sec-
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tion where we will focus on the case of the fundamental
Hermite-Gaussian mode.

Reflection and transmission coefficients of the nanowire

Here we describe the structure of the scattering co-
efficients, on the example of an incident field in the
(+, nx, ny, p) mode, Einc(r) = Ainc E(+, p)

nx,ny (r), Ainc being
the field’s amplitude. When illuminating the nanowire,
it generates a scattered field Escat = Ainc Escat (p)

nx,ny (see

Fig. 2(b)) where Escat (p)
nx,ny is the field scattered by the

nanowire due to the incidence of E(+, p)
nx,ny . It can be

expanded on the Hermite-Gaussian modes propagating
along ±z as

Escat (p)
nx,ny (r)=

∑
px,py

p′={‖,⊥}

(
α
px,py (p′)

nx,ny (p) E(+, p′)
px,py (r)

+ β
px,py (p′)

nx,ny (p) E(−, p′)
px,py (r)

)
+ Ẽ

scat (p)

nx,ny (r),

(10a)

α
px,py (p′)

nx,ny (p) =

∫∫
SR

d2 r Escat (p)
nx,ny (r) · E(+, p′)

px,py

∗
(r), (10b)

β
px,py (p′)

nx,ny (p) =

∫∫
SL

d2 r Escat (p)
nx,ny (r) · E(−, p′)

px,py

∗
(r), (10c)

where the coefficients α
px,py (p′)

nx,ny (p) and β
px,py (p′)

nx,ny (p) depend on

the laser wavelength and polarization, as well as on the
nanowire position and properties (refractive index and
radius). These two groups of coefficients correspond to
the part of the scattered field propagating along +ez and

−ez respectively while Ẽ
scat (p)

nx,ny is associated to the off
axis contribution of the scattered field. This last term
exists especially because of the finite lateral extension of
the cavity mirrors. The integration surfaces SR/L are
chosen to be the surfaces of the spherical cavity mir-
rors located at ±Lcav/2, ensuring the orthogonality of
the Hermite-Gaussian modes as discussed in . The nor-
malization is guaranteed by the fact that the transverse
size of the cavity mirrors D is assumed to be large com-
pare to the transverse spreading of the Hermite-Gaussian
modes which is the case in ref. [12] since D = 12µm and
w(±Lcav/2) = 2.1µm. Finally, in the Mie formalism
used in the following to compute the scattered field (see
Appendix ), the total field due to the incidence of Einc

on the nanowire is Etot(r) = Einc(r) + Escat(r).

Since the intra-cavity field is fully characterized by the
reduced fields, the reflection and transmission coefficients
are defined as the ratio of the outgoing and incoming
reduced fields. For the scattering from a (+, nx, ny, p)
Hermite-Gaussian mode to another (±, px, py, p′) mode,

these coefficients reads as

C(+)
r

px,py (p′)

nx,ny (p) (r0) =
F

tot (−,p′)
px,py (z0)

F
inc (+,p)
nx,ny (z0)

, (11a)

C
(+)
t

px,py (p′)

nx,ny (p) (r0) =
F

tot (+,p′)
px,py (z0)

F
inc (+,p)
nx,ny (z0)

, (11b)

where

F inc (+,p)
nx,ny (z0) = Ainc eiϕ

nx,ny
0 (z0), (12a)

F tot (−,p′)
px,py (z0) = Aincβ

px,py (p′)

nx,ny (p) e−iϕ
px,py
0 (z0), (12b)

F tot (+,p′)
px,py (z0) = Ainc

[
α
px,py (p′)

nx,ny (p) + δnx,px δny,py δp,p′
]

× eiϕ
px,py
0 (z0). (12c)

In Eq. (11), the (+) notation reminds that these coef-
ficients have been obtained for a propagation of the in-
cident beam along +z. Injecting Eq. (12) in Eq. (11)
leads to the reflection and transmission coefficients from
the (+, nx, ny, p) to the (±, px, py, p′) Hermite-Gaussian
mode as

C(+)
r

px,py (p′)

nx,ny (p) (r0) = β
px,py (p′)

nx,ny (p) e−i[ϕ
px,py
0 (z0)+ϕ

nx,ny
0 (z0)],

(13a)

C
(+)
t

px,py (p′)

nx,ny (p) (r0) =
(
α
px,py (p′)

nx,ny (p) + δnx,px δny,py δp,p′
)

× ei[ϕ
px,py
0 (z0)−ϕnx,ny0 (z0)]

(13b)

where α
px,py (p′)

nx,ny (p) and β
px,py (p′)

nx,ny (p) are given by Eq. (10) while

ϕ
nx,ny
0 has been introduced in Section . The second part

of parenthesis in Eq. (13b) is the remaining contribution
from the incident field which should not be forgotten.
These coefficients depend on the laser wavelength and
polarization as well as on the nanowire position r0 and
properties (Rnw and n). Those calculations thus help
connecting the α and β coefficients, which account for
the 3D vectorial structure of the problem, to the scat-
tering coefficients of the nanowire in the transfer matrix
formalism, which presents a 1D structure. In order to
map the optomechanical coupling, they will be computed
for any position of the nanowire in the cavity.

Transfer matrix of a nanowire in a cavity

We now derive the transfer matrix associated to the
nanowire which cross-couples the different transverse
intra-cavity modes. In order to simplify the formalism,
and come closer to the experimental configuration, we
note that because of the geometry considered here (very
short cavity), the intra-cavity modes are almost non di-
verging, leading to zero cross polarization reflection and
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transmission coefficients. In that case the transfer matrix
Snw(r0) given in Eq. (9) becomes a diagonal bloc matrix,
each bloc corresponding to a given polarization. It allows
to work in the following with 2 by 2 transfer matrices for
each polarizations according to(

F
(+,p)
px,py (z0)

F
(−,p)
p′x,p

′
y

(z0)

)
= S(p)

nw (r0)

(
F

(+,p)
nx,ny (z0)

F
(−,p)
n′x,n

′
y
(z0)

)
, (14)

with S
(p)
nw (r0) (we omit the mode indices here again) read-

ing as

S(p)
nw (r0) =

C(+,p)
t

px,py

nx,ny
(r0) C

(−,p)
r

px,py

n′x,n
′
y

(r0)

C
(+,p)
r

p′x,p
′
y

nx,ny (r0) C
(−,p)
t

p′x,p
′
y

n′x,n
′
y

(r0)

 .

(15)

Thus, the coefficients of the M -transfer matrix giving the
reduced fields on the right of the nanowire in terms of the
reduced fields on its left according to(

F
(+,p)
px,py (z0)

F
(−,p)
n′x,n

′
y
(z0)

)
= M (p)

nw (r0)

(
F

(+,p)
nx,ny (z0)

F
(−,p)
p′x,p

′
y

(z0)

)
, (16)

can be written in term of the S matrix coefficients as(
M (p)

nw

)
11

=
1

C
(−,p)
t

p′x,p
′
y

n′x,n
′
y

(
C

(+,p)
t

px,py

nx,ny
C

(−,p)
t

p′x,p
′
y

n′x,n
′
y

− C(+,p)
r

p′x,p
′
y

nx,ny
C(−,p)
r

px,py

n′x,n
′
y

)
,

(17a)(
M (p)

nw

)
12

=
C

(−,p)
r

px,py

n′x,n
′
y

C
(−,p)
t

p′x,p
′
y

n′x,n
′
y

, (17b)

(
M (p)

nw

)
21

=−
C

(+,p)
r

p′x,p
′
y

nx,ny

C
(−,p)
t

p′x,p
′
y

n′x,n
′
y

, (17c)

(
M (p)

nw

)
22

=
1

C
(−,p)
t

p′x,p
′
y

n′x,n
′
y

. (17d)

In order to describe the optomechanical coupling for
any position of the nanowire within the cavity, it is nec-
essary to compute those coefficients for all possible po-
sitions of the nanowire. However, here we consider the
ideal situation of a symmetric cavity, leading to

C
(−)
r/t

qx,qy (p′)

mx,my (p)
(x0, z0) = C

(+)
r/t

qx,qy (p′)

mx,my (p)
(x0,−z0),

(18a)

C
(±)
r/t

qx,qy (p′)

mx,my (p)
(−x0, z0)=(−1)mx+qx C

(±)
r/t

qx,qy (p′)

mx,my (p)
(x0, z0).

(18b)

It is then sufficient to compute the reflection and trans-
mission coefficients for an incident beam propagating
along +z in the half plane x0 ≥ 0 to obtain the M -
transfer matrix appearing in Eq. (16) for any position of
the nanowire.

FIG. 3. Scheme of the intra-cavity field propagation for an op-
tical cavity pumped from the left side. MBS,L/R are the trans-
fer matrices of the cavity mirrors, M−Lcav/2,z0 and Mz0,Lcav/2

propagate the fields in the left and right sub-cavities respec-
tively, and Mnw accounts for the propagation through the
nanowire.

Restriction to the fundamental Hermite-Gaussian mode

We now focus on the optomechanical coupling be-
tween the nanowire and the fundamental cavity mode
nx = ny = 0 and px = py = 0, and for readability we
omit the indices in the following expressions. It corre-
sponds to the cases where (i) the cavity length is locked
at the resonance of the fundamental cavity mode; (ii) the
cavity length is scanned around the resonance of the fun-
damental mode, when no other resonant mode is present
in the scanning range. It allows to simplify the formalism
presented above but also to stick to the experimental con-
figuration studied in ref. [12]. Nonetheless, the formalism
exposed is suitable to treat the case of any higher order
intra-cavity optical modes or even to study the interac-
tion between several cavity modes possibly mediated by
the nanowire scattering. The reflection and transmission
coefficients from the fundamental cavity mode (+, p) to-
wards (±, p) are obtained combining Eq. (13) and (10),

C(+,p)
r (r0)=e−2iϕ0(z0)

∫∫
SL

d2 r E
(p)
scat(r) · E(−, p)

0,0

∗
(r),

(19a)

C
(+,p)
t (r0) = δp,p′ +

∫∫
SR

d2 r E
(p)
scat(r) · E(+, p)

0,0

∗
(r),

(19b)

where the scattered field E
(p)
scat is generated by the inci-

dent field E
(+, p)
0,0 .

A first way to obtain the scattered field E
(p)
scat is to ex-

pand the incident Gaussian beam onto the plane wave
spectrum (see Appendix ) and to compute the total scat-
tered field as the sum of all the contributions due to
the different incidences. The surface integrals in (19)
can then be calculated numerically (see Appendix for
details) for different nanowire radius and positions in
the cavity using the experimental parameters of ref [12]
(Lcav = 12µm, Rc = 28µm, D = 12µm, λ = 770 nm and



9

n = 2.61). Fig. 2(e) shows in black the transverse depen-

dence of
∣∣∣C(+, p)
r

∣∣∣ for a nanowire radius Rnw = 65 nm at

z0 = 0. As expected, the amplitude is maximum at the
center of the beam and decreases with a Gaussian profile
laterally. Additionally, Fig. 2(fg) exhibits (black lines)
the radius dependence of the amplitude and phase of the
reflection and transmission coefficients for a nanowire lo-
cated at r0 = 0. We observe a strong dependence of
these coefficients with respect to the nanowire radius due
to the Mie resonances, as observed in the variation of the
1D cross section presented Fig. 2(cd). Finally, the en-
ergy conservation allows to obtain the nanowire induced
cavity losses, defined in modulus as

∣∣∣C(+,p)
losses

∣∣∣ =

√
1−

(∣∣∣C(+,p)
r

∣∣∣2 +
∣∣∣C(+,p)
t

∣∣∣2), (20)

and shown (black lines) in Fig. 2(h). This coefficient
then characterizes the amount of light scattered out of
the cavity axis and towards other modes than the funda-
mental cavity mode. With no surprise, one notice that
the nanowire can scatter an important fraction of the
light. It will thus be important to carefully position it in
the standing wave structure of the cavity mode, in order
to maximize the optomechanical coupling. Finally, the
reflection and transmission coefficients from one polar-
ization to the other have been numerically shown to be
zero justifying the fact to consider independent polariza-
tion states in section .

In order to reduce the numerical calculation time we
developed a second method to compute the scattered field

E
(p)
scat. It consists in making the assumption that the in-

coming optical field wave front is almost flat on the extent
of the sub-wavelength sized nanowire. In that case, we
assume that the incident field can be approximated by a
single plane wave incidence with a wavevector ki orthog-
onal to the phase curvature of the beam at the nanowire

position, with an amplitude E
(+)
0,0 (r0) evaluated at the

nanowire position, and a polarization vector eP which

can be parallel (e
‖
P = −ey) or perpendicular (e⊥P = ex)

to the nanowire axis. Since we consider a nanowire po-
sitions close to the center of the cavity in the follow-
ing (z0 � zR), the incident wavevector takes the form
ki = k ez. It generates a scattered field in the (xz) plane
given by Eq. (1) for φi = 0. The vertical y-axis depen-
dence can be accounted phenomenologically by consider-
ing that the scattered field intensity follows the Gaussian
distribution of the incident beam, f(y, z) = e−y

2/w(z)2

where w(z) is the waist of the fundamental mode at po-
sition z. Under these assumptions, the scattered fields

for both polarizations are

E
‖
scat(r)=E

(+)
0,0 (r0) e

− y2

w(z)2

+∞∑
l=−∞

(−i)lb‖lH
(1)
l (kr) eilϕ ey,

(21a)

E⊥scat(r)=E
(+)
0,0 (r0) i e

− y2

w(z)2

×
+∞∑
l=−∞

(−i)la⊥l
[
il
H

(1)
l (kr)

kr
er−H(1)′

l (kr) eϕ

]
eilϕ,

(21b)

where the coefficients a⊥l and b
‖
l are given in Ap-

pendix and where the Cartesian coordinate z is expressed
in terms of the cylindrical coordinates centred at the
nanowire position as z = z0 − r cosϕ. In that case, it is
clear from the expressions of the scattered fields Eq. (21),

that an incident field polarized along e
‖
P (e⊥P ) will gener-

ate a scattered field with no contribution along e⊥P (e
‖
P ),

leading to zero coefficients for cross polarizations. The
result of this procedure is shown Fig. 2(e-h) in color lines
and we observe a very good agreement with the method
presented before, the second method being two orders of
magnitude faster.

OPTOMECHANICAL COUPLING WITH THE
FUNDAMENTAL CAVITY MODE

Formalization of the problem

The optomechanical interaction between an optical
cavity mode and a single mechanical mode vibrat-
ing along z (pulsations ωcav |Ωm; ladder operators

â, â† || b̂, b̂†) arises from the parametric dependence of the
optical cavity resonance pulsation ωcav(z0) on the oscilla-
tor position z0. It is described in second quantization by
the coupling Hamiltonian Ĥint = ~g0 â

†â(b̂ + b̂†) where
g0 = Gδzzpf is the single photon coupling strength with
G = ∂ωcav/∂z0 and δzzpf =

√
~/2MeffΩm the spatial

spreading of the oscillator zero point fluctuations (ef-
fective mass Meff [73]). A single photon in the cavity
(〈â†â〉 = 1) generates an optical force on the oscilla-
tor F (1) = −~g0/δz

zpf leading to a static displacement
δz(1) = F (1)/MeffΩ2

m = 2(g0/Ωm)δzzpf . The static ef-
fect of a single photon in the cavity will then be observ-
able only if δz(1) is larger than δzzpf , a criteria equiv-
alent to 2g0/Ωm ≥ 1. Moreover, δz(1) also have to be
larger than the Brownian spreading of the oscillator posi-
tion ∆zth =

√
kBT/MeffΩ2

m due to thermal fluctuation,
which makes the temperature a relevant parameter of
the problem. Finally, the static deformation of the oscil-
lator leads to a parametric shift of the cavity resonance,

δω
(1)
cav = g0 δz

(1)/δzzpf . If it exceeds the cavity linewidth,

δω
(1)
cav > κcav, the system presents a static optomechan-
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ical non-linearity at the single intra-cavity photon level.
This exotic regime is achievable if the single photon para-
metric cooperativity C(1) = 2g2

0/κcavΩm is larger than
one.

In this Section we study the optomechanical interac-
tion between the nanowire and the fundamental cav-
ity mode which acquires a vectorial character, G =
∇ωcav|r0 , the nanowire being able to oscillate in both
transverse (xz) directions. However, due to the faster
variations of the intra-cavity field intensity along the cav-
ity axis (over λ/4 along z compared to w0 along x), we
will focus in the following on the optomechanical inter-
action along that direction since it provides the larger
coupling strength (Gz/Gx ∼ 10). We will show that the
NIM configuration open the road to the study of the in-
trinsic optomechanical non-linearity at the single photon
scale, a long standing goal of cavity optomechanics.

Optomechanical coupling strength

To obtain the coupling strength Gz = ∂ωcav/∂z0 it is
essential to know how the presence of the nanowire in the
optical cavity shifts the cavity resonance. Because in the
system depicted here the cavity shifts are of the order of
several hundreds of GHz which is very large compared to
the fast tunability of most available lasers, it has been
chosen in the experimental work of ref. [12] to adjust the
cavity length instead of the laser frequency and we follow
the same approach here. For small relative shifts of the
cavity frequency, the coupling strength is given by

Gz ≈
4πc

Nλ2

∂Lcav
∂z0

, (22)

where N is the longitudinal mode order of the pumped
cavity mode (N = 32 in this work, meaning that a node
is located at the center of the cavity at z = 0).

The cavity shift ∂Lcav/∂z0 is obtained by computing
the cavity resonant length for different nanowire posi-
tion. It is determined from the transmission of the cav-
ity, which is the channel used in the experiment to lock
the cavity at resonance. To do so, we propagate the field
through the optical cavity (see Fig. 3) using the transfer
matrix formalism presented in . The reduced fields on
the right side of the cavity are expressed in terms of the
reduced fields at its left as(

F
(p)
t

F
(p)
v

)
= M (p)

(
F

(p)
i

F
(p)
r

)
, (23a)

M (p) = MBS,RMz0,
Lcav

2
M (p)

nw M−Lcav
2 ,z0

MBS,L, (23b)

where (p) stands for the polarization of the incident
light which can be either parallel or perpendicular to the

nanowire axis. In this expression, F
(p)
r and F

(p)
t cor-

respond to the reflected and transmitted reduced fields

while F
(p)
i and F

(p)
v are the incoming reduced fields on the

cavity, from the left and right respectively. In the follow-
ing, we will consider a cavity pumped only from the left

side such as F
(p)
v = 0. In (23b), MBS,L/R are the transfer

matrices of the cavity mirrors given in Eq. (7) where we
have chosen ηL = −1 and ηR = 1 to ensure the symmetry
of the reflected intra-cavity fields on both cavity mirrors,
and RL = RR = 0.994. The propagation of the fields
in the left and right sub-cavities is taken into account
through M−Lcav/2,z0 and Mz0,Lcav/2 respectively, these
matrices being obtained using Eq. (5) in the case of the
fundamental cavity mode (nx = ny = 0). The transfer

matrix of the nanowire M
(p)
nw which depends on the laser

wavelength and polarization, as well as on the nanowire
position and geometry, is obtained using Eq. (17) where
the reflection and transmission coefficients have been ob-
tained in . As already discussed, the nanowire does not
couple the two polarizations which can then be treated in-
dependently. Finally, we define the reflection and trans-
mission coefficients of the cavity for a given polarization
as

C(p)
r = F (p)

r /F
(p)
i , (24a)

C
(p)
t = F

(p)
t /F

(p)
i . (24b)

They allow to define the intensity coefficients as C
(p)
R =∣∣∣C(p)

r

∣∣∣2 and C
(p)
T =

∣∣∣C(p)
t

∣∣∣2 corresponding to the ratio

of the intensity of the reflected or transmitted field di-
vided by the intensity of the incident field on the cavity.
Moreover, using the energy conservation, it is possible to
evaluate the amount of light scattered out of the cavity

mode due to the nanowire, C
(p)
L = 1− C(p)

R − C
(p)
T .

The evaluation of (23) and (24) for different nanowire
positions on the cavity axis and for different cavity
lengths around the resonance of the fundamental mode
leads to the so called LZ maps, from which the reso-
nant cavity length Lcav(z0) and the quantitative eval-
uation of ∂Lcav/∂z0 can be derived. Fig. 4 represents
the LZ maps of the transmission and losses coefficients
as well as the position dependence of the cavity finesse
F for two nanowire radii and different incident polar-
ization. Note that the finesse F takes into account the
losses due to the finite reflectivity of the cavity mirrors
as well as the ones due to the scattering of the nanowire.
On these plots, the origin of the cavity shift matches
the resonant cavity length of the symmetric 32th longi-
tudinal cavity mode when no nanowire is present in the
cavity (L0

cav ≈ 12.440µm, F0 ≈ 522), meaning that a
node of the intra-cavity field is present at the center of
the cavity (z = 0). The left column is obtained for a
small nanowire radius (Rnw = 10 nm, parallel polariza-
tion) and corresponds to the dipole-like case where the
nanowire hardly disrupts the intra-cavity field. We ob-
serve the λ/2 periodic oscillation of the cavity resonant
length in agreement with the standing wave profile of the
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FIG. 4. Cavity transmission and losses coefficients for different positions of the nanowire on the cavity axis while scanning
the cavity length: (ab) Rnw = 10 nm and parallel polarization of the light, (de) Rnw = 65 nm and perpendicular polarization.
(c) and (f) show the nanowire position dependence of the cavity finesse (black solid lines) and of the optical force applied by
the intra-cavity field at resonance on the nanowire (red dashed lines) obtain in . In (c), the cavity finesse remains larger than
F0/2 meaning that the nanowire only probe the intra-cavity field. In (f) on the contrary, the nanowire strongly impacts the
intra-cavity field, leading to an important decrease of the cavity finesse at an anti-node of the field and then to a drop of the
nanowire induced cavity losses. In (d) • and ◦ indicate nanowire positions maximizing the coupling strength Gz and the single

photon parametric cooperativity C(1) respectively. (g) Resonant cavity shift maps for varying nanowire radii and positions on
the cavity axis, for a parallel polarization of the light. The black solid and dashed lines indicate positions of maximum coupling
strength Gz and maximum ratio G2

z/κcav involved in the single photon static cooperativity, κcav being the linewidth of the
cavity. (h) Radius dependence of the maximum optomechanical coupling strength along z for both light polarizations (thick
black lines). The thin orange lines represent the cavity finesse at the position of the maximum coupling strength. (g) and (h)
have been obtained for an empty cavity finesse of F0 ≈ 50000 which is the highest value one can reach using the experimental
configuration of ref. [12].

intra-cavity field. At the nodes of the intra-cavity field,
there is no cavity shift or losses induced by the nanowire,
while they are maximized at an anti-node.

The middle column of Fig. 4 is obtained for a nanowire
radius Rnw = 65 nm (perpendicular polarization) and
corresponds to the experimental situation of ref. [12]. We
observe cavity shifts of the order of 10 nm in a good quan-
titative agreement with the experimental results. It is
worth noticing that because of the large enough radius
of the nanowire, residual cavity shifts and losses are also
observable at the nodes of the intra-cavity filed. More-
over, contrary to the previous case where the nanowire
induced cavity losses remained small compared to the
intrinsic losses of the cavity mirrors here they become
larger (F < F0/2, see Fig. 4(f)). This finesse reduction is
then responsible for a reduction of the intra-cavity field,
so that the total resonant losses get reduced when the
nanowire is largely inserted in the optical mode. We will
see in that this effect is also at the origin of the ring
shapes appearing in the XZ maps of the scattered field
when the cavity length is locked at resonance.

Using the same procedure for different nanowires radii
gives access to the cavity shifts maps presented Fig. 4(g)

for z0 ∈ [−λ/4, λ/4], where we plot the resonant cavity
shifts obtained for a parallel polarizations of the light
(see Appendix for the perpendicular case). The first in-
teresting result consists in the existence of radius ranges
where the cavity shift is more important at a node of
the intra-cavity field than at an anti-node, for example
for a nanowire radius between 65 nm and 112 nm. This
effect, also observable in membrane in the middle sys-
tems, is due to internal resonances and depends on the
number of field oscillations storable inside the nanowire,
which structures its reflection and transmission coeffi-
cients, demonstrating the radius dependence of this phe-
nomena. More surprisingly, we observe positive shifts of
the resonant cavity length as soon as the diameter of
the nanowire becomes large enough. This effect was un-
expected since the insertion of a dielectric of refractive
index larger than one could at first sight only be expected
to increase the cavity optical path length, then leading
to a reduction of its resonant length. Contrary to the
previous situation, it is not observable in MIM systems
and is a specificity of the nanowire in the middle con-
figuration due to the dimensionality of the system. In-
deed, for 1D objects inserted in a 2D optical field, the
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input/output formalism leads to new relations between
the reflection and transmission coefficients of the scat-
terer which enriches the phenomenology of the system.
The experimental investigation of this effect will be the
subject of a future work.

From the above results it is clear that the position
of the nanowire in the cavity can be used to tune the
optomechanical interaction. It is null at a node or an
anti-node of the intra-cavity field since the resonant cav-
ity length shift is extremum, and maximum in-between
as shown by the black solid line in Fig. 4(g) which rep-
resents the positions of the maximum coupling strength
shown in (h). As expected from the existence of internal
Mie resonances which structure the light-nanowire inter-
action, we observe a strong variation of the maximum
coupling strength with the nanowire radius and light po-
larization. These results can be used to maximize the
optomechanical coupling of the system, so as to reach
original regimes as discussed below.

Optomechanics at the single photon level

We have seen that the optomechanical coupling
strength strongly depends on the nanowire diameter.
We will now explore the geometrical parameters of the
nanowire (length and diameter) in order to identify a
regime of parameters which maximize the optomechan-
ical interaction. In the framework of , the static force
exerted on the nanowire by a single intra-cavity photon
is potentially observable if δz(1)/δzzpf = 2gz0/Ωm > 1,
this ratio involving the optomechanical coupling strength
Gz as well as the effective mass Meff and frequency
Ωm/2π of the fundamental vibrational mode. From the
beam theory [74] we have Ωm/2π = κΩRnw/L

2
nw where

κΩ = 3126 Hz.m is obtained from the Euler-Lagrange
equation using a Young modulus E = 400 GPa and den-
sity ρ = 3210 kg.m−3 of SiC (iso-frequency are plotted
as grey dashed lines in Fig. 5). The effective mass of
the fundamental vibrational mode represents a fourth
of the nanowire mass, leading to Meff = ρπR2

nwLnw/4.
Using the radius dependence of the parametric coupling
strength Gz exposed in section , we compute the maxi-
mum value of 2gz0/Ωm as a function of the nanowire di-
mensions for a parallel polarization of the intra-cavity
field (Fig. 5(a)). This ratio is largely above unity for
a wide range of accessible nanowire geometries, which
demonstrates the possibility to largely enter in the regime
where δz(1)/δzzpf > 1. It reaches 104 for a nanowire of
radius Rnw = 100 nm and length Lnw = 500µm (NW
1, diamond marker in Fig. 5) relevant for cryogenic tem-
perature experiments [69]. Additionally, we indicate by
a star in Fig. 5 the nanowire used in ref. [12] (NW 2:
Rnw = 65 nm and Lnw = 70µm) and we show in Ap-
pendix the ratio 2gz0/Ωm for a perpendicular polarization
of the light (situation of ref. [12]). In order to highlight
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FIG. 5. Dependence on the nanowire dimensions of
δz(1)/δzzpf = 2gz0/Ωm (a), of the single photon recoil δz(1)

(b), and of the static single photon parametric cooperativ-

ity C(1) = 2 gz0
2 /κcavΩm (c) for parallel polarization of the

intra-cavity field (see Appendix for the perpendicular case).
Note that a nanowire length beyond 1 mm is within exper-
imental reach. The grey dashed lines are the fundamental
vibrational mode iso-frequencies. In (b), the blue lines show

the nanowire dimensions ensuring δz(1) = ∆zth for differ-
ent bath temperatures while the black dotted line indicates
nanowire dimensions for which δz(1) = Rnw. In those ex-
treme regimes of giant light-induced nanowire deformations,
one cannot expect the linear modelization of to remain per-
tinent. The diamond and star markers correspond to a rele-
vant nanowire for cryogenic temperature experiment (NW 1:
Rnw = 100 nm and Lnw = 500µm) and to the nanowire used
in ref. [12] (NW 2: 65 nm, 70µm) respectively. The two circles
indicate two nanowires recently studied in our group: NW 3
(50 nm, 200µm) and NW 4 (225 nm, 1400µm). In (c) we also
show nanowire dimensions corresponding to a static single
photon parametric cooperativity of one (solid black line) and
to a dynamical single photon parametric cooperativity of one
(dashed black line). The dashed red line indicates a static sin-
gle photon parametric cooperativity of one when the nanowire
extremity is functionalized to maximize the optical interaction
while minimizing the optical losses (see text).
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where our experiment stands compared to the theory, we
also show (black circles) two nanowires recently studied
in our group: NW 3 (Rnw = 50 nm, Lnw = 200µm) and
NW 4 (Rnw = 225 nm, Lnw = 1400µm).

However, satisfying the condition 2gz0/Ωm > 1 is not
sufficient alone in a real experiment to directly mea-
sure the static impact of a single intra-cavity photon
on the nanowire. The single photon deformation δz(1)

has also to be larger than the Brownian spreading of the
nanowire position ∆zth associated to its coupling to the
thermal bath. The experimental work of ref. [12] was con-
ducted at room temperature where δz(1) ∼ 20 pm while
∆zth ∼ 10 nm, which underlines the importance to op-
erate at low temperature where the thermal spreading
can be reduced by several orders of magnitude. Fig. 5(b)
shows the value of δz(1) in terms of the nanowire di-
mensions for a parallel polarization of the light (see Ap-
pendix for the perpendicular case). The blue lines in-
dicates the nanowire dimensions ensuring δz(1) = ∆zth

for different bath temperatures. Interestingly, NW 1
presents a single photon static displacement larger than
its Brownian spreading as soon as the temperature is re-
duced below 4 K. For this nanowire, the ratio δz(1)/∆zth

even reach a value of the order of 300 at 20 mK, demon-
strating the possibility of largely entering such a regime
experimentally. It is one of the reason why a specific
effort has been put recently to develop an experimental
set-up at cryogenic temperature, already showing promis-
ing results [69]. Note that the measurements realized in
ref. [12] have allowed to measure the action of the intra-
cavity field on the nanowire at unitary photon numbers.
First, by using a pump-probe technique and a temporal
averaging, we manage to detect optical forces generated
by mean photon number changes smaller than one. Sec-
ondly, we demonstrated that the impact of the gradients
of such optomechanical force field (produced by approx-
imatively one photon) was observed and does govern the
mechanical properties of the nanowire (its vibration fre-
quency in particular). In comparison, the temperature
criteria discussed above leads to the desirable regime
where the nanowire dynamics and its position fluctua-
tions are totally dominated by intra-cavity light quan-
tum fluctuations, which could then be observable at the
single photon level.

We have thus shown that the optomechanical interac-
tion is extremely large in such a configuration and that a
single intra-cavity photon can have a measurable impact
on the nanowire dynamics. We now investigate a second
order optomechanical effect, the possibility to reach the
regime where one can observe a static bistability of the
cavity, at the single photon level. The static bistability is
observed when the intra-cavity field generates a static de-
formation of the nanowire, which in turn shifts the cavity
resonance by more than its optical linewidth. This highly
non-linear regime is achieved when the static single pho-
ton parametric cooperativity C(1) = 2 gz0

2 /κcavΩm be-

comes larger than 1. The expression of C(1) highlights
the fact that a large cooperativity requires an appropriate
balance between the dispersive and dissipative coupling:
the cavity shift has to be as large as possible to ensure a
large value of gz0 while preserving a small cavity loss rate
κcav, or in other words a sufficiently large cavity finesse.
As a consequence, there exists optimum positions in the
standing wave which maximize the single photon para-
metric cooperativity: an example of this compromise is
shown in Fig. 4(d) where the positions along z maximiz-
ing C(1) (indicated by ◦) do not coincide with the posi-
tions associated to the maximum coupling strength (indi-
cated by •) since the nanowire modifies the cavity finesse
has shown in Fig. 4(f). Fig. 5(c) presents the maximum
value of C(1) as a function of the nanowire dimensions for
an empty cavity finesse F0 ≈ 50000 (typical values one
can expect with the fiber micro-cavity of ref. [12]) and for
a parallel polarization of the light (see Appendix for the
perpendicular case). The values obtained with existing
nanowires are smaller than one but can approach unity.
It means that it is necessary to put 1/C(1) photons in-
side the cavity to observe a static bistability, namely 25
(7) photons in the situation of NW 1 (NW 4) for a par-
allel (perpendicular) polarization of the light. However
operating those ultra-soft nanowires in the middle of a
fiber microcavity remains a true experimental challenge.
There are possible avenues for improving the single pho-
ton parametric coupling strength, such as optimizing the
optical mode geometry to minimize the nanowire induced
photon losses, or operating with thin and long nanowires
(which maximizes their mechanical susceptibility) func-
tionalized at their extremity with a sub-micron sphere
to maximize the optical interaction while minimizing the
optical losses. To give an order of magnitude of the lat-
ter possibility, we show in Fig. 5(c) (black dotted line) a
situation where the nanowire has been functionalized by
a second nanowire maximizing the ratio G2

z/κ.

Finally, the above discussions were connected to the
static deformation and the static bistability. One can also
evaluate the dependence on the nanowire geometry of the
more common dynamical optomechanical single photon
cooperativity, C̃(1) = 2g2

0/κcavΓm. It makes use of the
resonant mechanical susceptibility instead of the static
one which is thus enhanced by the mechanical quality fac-
tor, and C̃(1)Ncav generally sets the strength of the sec-
ond order optomechanical effects, such as optomechani-
cal cooling or parametric instability [1, 75]. In particular,
large values of C̃(1) corresponds to a strong squeezing of
the outgoing light at the mechanical frequency [5, 76, 77]
while C(1)Ncav � 1 leads to a broadband squeezing in the
cavity bandwidth in the adiabatic regime [70] which is the
situation of this work (Ωm � κcav). The black dashed
line in Fig. 5(c) indicates C̃(1) = 1 for a nanowire quality
factor Q = 105 (as observed at 20 mK [69]) demonstrat-
ing the high potential of the NIM configuration. It opens
the road to applications in quantum optics still operat-
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ing at low photon numbers, where non Gaussian states
of the light [13] should be reachable with a mean photon
number close to one.

TWO-DIMENSIONAL CHARACTERIZATION OF
A NANOWIRE IN THE MIDDLE SYSTEM

The above analyses were restricted to the situation
where the nanowire is positioned on the optical axis.
In this section we will explore the 2D character of the
system, and in particular the optomechanical force field
experienced by the nanowire.

Two-dimensional characterization of the intra-cavity
field

Due to its sub-wavelength-sized diameter, the
nanowire can be efficiently used as a scanning probe to
map and explore the structure of the intra-cavity field,
i.e. the wave function of the confined photonic mode.
This capacity is largely used experimentally in the align-
ment and optimisation sequences. In the following, we
will ”lock” the cavity length at resonance, exploiting the
cavity transmission signal as in the experimental case, to
ensure that for any position of the nanowire in the cavity
the resonance condition of the fundamental cavity mode
remains satisfied. In practice, for a given nanowire po-
sition, we numerically evaluate Eq.(23), compute the in-
tensity transmission coefficient while scanning the cavity
length around the resonance (which is equivalent to a ver-
tical cut in the transmission map of Figure 4), and fit it
to extract the resonant cavity length as well as the cavity
finesse. Then, reproducing such a procedure for different
positions of the nanowire in the (xz) plane, we obtain
two dimensional maps of the resonant cavity shift, cav-
ity finesse, transmission and scatter coefficients as shown
Figure 6 for NW 2 (perpendicular polarization). It allows
a direct visualization of the intra-cavity standing waves,
the nodes (anti-nodes) of the field appearing here as re-
gion of large (low) transmission and small (large) cavity
shifts.

For this nanowire, the scatter map presents ring shapes
due to the large dispersive coupling achieved when the
nanowire is positioned in the middle of an antinode.
Outside of the rings, the optical losses induced by the
nanowire are smaller than the intrinsic losses of the cavity
mirrors and the nanowire locally probe the intra-cavity
field without too much alteration. Inside the rings, the
dispersive coupling becomes so large that the nanowire
induced losses overpass the cavity mirrors losses, thus
lowering the intra-cavity field and leading to a decrease
of the amount of scattered light. Actually, the rings cor-
respond to nanowire positions where the losses due to the
nanowire and to the finite mirror reflectivity are equiv-
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FIG. 6. Transmission (a), cavity shift (b), scattered coeffi-
cient (c) and cavity finesse (d) maps obtained when scanning
a nanowire of radiusRnw = 65 nm in the (xz) plane while lock-
ing the cavity at resonance for a perpendicular polarization of
the light. The dashed lines in (c) and (d) indicates positions
where F = F0/2 and coincide with the rings in the scattered
map. (ef) Optomechanical force maps applied by the intra-
cavity field on the nanowire for an input power of 1µW and
a perpendicular polarization of the light. The ? symbol in-
dicates the position of maximum force curl (1 nN.m−1), see
text.

alent, thus reducing the cavity finesse by a factor two
(F = F0/2).

If the reduction of the intra-cavity field strength is
usually seen as a limitation preventing the observation
of large cooperativities or optomechanical forces, it also
provides a new dispersive measurement channel featur-
ing large variations with the nanowire position (stronger
than the one observed in the transmission or reflection
channels), a key ingredient to realize efficient optical
readout of the nanowire position [58, 60, 62]. Experi-
mentally, the signal to noise ratio obtained on the later-
ally scattered signals was always significantly larger than
the one obtained on the usual measurement channels.
As a comparison, we give in Appendix the XZ maps
obtained for a dipole-like behaving nanowire of radius
Rnw = 10 nm and for a parallel polarization of the light.
In this case, the nanowire hardly disturbs the intra-cavity
field (see Fig. 4(c)) and no ring is observable in the scat-
tered map.
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Optomechanical force exerted on the nanowire

The previous scanning probe analysis allows to under-
stand how the nanowire impacts the intra-cavity field,
which is a first aspect of the optomechanical coupling.
To fully characterize the NIM system, it is crucial to also
study the reverse interaction, namely the optomechani-
cal force applied by the intra-cavity field on the oscillator.
Contrary to usual cavity optomechanical setup, this dual
investigation is of first importance in NIM configurations
because the spatial profile and the pumping efficiency
of the cavity mode vary with the nanowire position. As
such, the photon number present in the optical mode will
also depend on the nanowire localization, which prevents
to estimate the optical force from the single knowledge
of the parametric coupling strength g0. In that view, the
reasoning of section should be seen as a qualitative eval-
uation of the the optomechanical interaction expected in
the NIM system.

The time-average of the optical force experienced by
the nanowire is computed by integrating the Maxwell
stress tensor on the nanowire surface when inserted inside
the cavity. It is given by

F =
ε0

2

∮
S

d2S

[
Re [(E · n)E∗] + c2Re [(B · n)B∗]

−1

2

(
(E ·E∗)n + c2(B ·B∗)n

) ]
,(25)

where ∗ denotes the complex conjugate quantity, Re[.] is
the real part operator, n is the outward normal vector
to S, and E and B are the complex electric and mag-
netic fields evaluated on the closed surface S enclosing
the nanowire. In practice, these fields will be evaluated
at the nanowire outer periphery, making use of the Mie
expressions given above. They will be calculated by tak-
ing into account the vectorial structure of the Gaussian
modes, which will allow to compute the optical force
vector for any position of the nanowire inside the cav-
ity. This procedure will lead to a correct description of
the forces as required for a mechanical exploration of the
intra-cavity photon wave function. Additionally, we con-
sider a spatially limited Gaussian cavity mode of waist
w0 and we assume that there is no efficient wave-guiding
mechanism along the nanowire, in such a way that the
surfacic integration can be restricted to the one of the
infinite cylinder surrounding the nanowire, leading to∮
S d2S ∗ → Rnw

∫ +∞
−∞ dy

∫ 2π

0
dϕ ∗.

When inserted inside the cavity, the nanowire is
simultaneously illuminated by the left and right in-
coming fields propagating towards the nanowire in
each sub-cavity. The total incident field then reads as

E
(p)
inc(r)=

√
Pinc/ε0c

(
A(+,p) E

(+,p)
0,0 (r) +B(−,p) E

(−,p)
0,0 (r)

)
,

where Pinc is the incident power, E
(±,p)
0,0 are the cavity

modes propagating along ±z, and A(+,p) and B(−,p) are

the dimensionless amplitudes of the corresponding fields
associated to the z = 0 plane. These amplitudes are
obtained from the transfer matrix formalism as(

A(+,p)

A(−,p)

)
= M−L/2,0MBS,L

(
1

C
(p)
r

)
, (26a)(

B(+,p)

B(−,p)

)
= Mz0,0M

(p)
nw M−L/2,z0 MBS,L

(
1

C
(p)
r

)
,

(26b)

where C
(p)
r is calculated using Eq. (23) and (24). Be-

cause we are interested in the vectorial aspect of the op-
tical force in the (xz) plane, it is necessary to take into
account the transverse structure of the Gaussian cav-
ity mode (the local approximation by a single incident
plane wave would not be sufficient here to account for
the transverse force along x). This is done by expanding
the incident field on the plane wave basis, for which the
scattered field takes an analytical form so that we can
operate with analytical expressions for the electromag-
netic field surrounding the nanowire. Furthermore, since
we consider the case of an infinite nanowire inserted in a
Gaussian beam, the force along y cancels for symmetry
reasons and it is a good approximation to restrict the
plane wave expansion to the (xz) plane for a weakly di-
verging cavity mode. Physically, this approximation is
equivalent to neglect the beam divergence in the y direc-
tion, so this calculation will be reliable in the Rayleigh
volume of the cavity mode which is the position where
the experiments of ref. [12] are conducted (field curva-
ture small over the entire cavity length). Under these
considerations, the fundamental Gaussian modes propa-
gating along ±ez can be approximated (see Appendix )

by E
(±,p)
0,0 (r) ≈ f(y)

∑
j / ||κj ||=k E

j
0 eiκ

(±)
j ·ρ e

(±,p)
P,j where

f(y) =
(

2
πw(z)2

)1/4

e−y
2/w(z)2 has been normalized such

as
∫∞
−∞ dy |f(y)|2 = 1 (p characterizes the polarization of

the field). In this expression, ρ = x ex + z ez is the 2D

position vector in the (xz) plane, and Ej0 , κ
(±)
j and e

(±,p)
P,j

are the amplitude, wave vector and polarization vector of
each plane wave contribution (given in Appendix ). The
total incident field is then expressed as a sum of plane
waves,

E
(p)
inc(r) =

√
Pinc

ε0c
f(y)

[
A(+,p)

∑
j

Ej0 eiκ
(+)
j ·ρ e

(+,p)
P,j

+B(−,p)
∑
j

Ej0 eiκ
(−)
j ·ρ e

(−,p)
P,j

]
,(27)

with |κj | = 2π/λ, which is the required form for optical
force calculation.

Each incident plane wave of this expansion E
j(p)
inc

generates a scattered field E
j(p)
scat which can be cal-

culated using the Mie formalism presented in Ap-
pendix , leading to a total field of the form E(p)(r) =



16√
Pinc/ε0c f(y)

∑
j E

(p)
j (ρ) with E

(p)
j = E

j(p)
inc + E

j(p)
scat.

Injecting it in the expression of the optical force given
above, we get

F(p) =
∑
j1,j2

F
(p)
j1 j2

, (28a)

F
(p)
j1 j2

=
PincRnw

2c

∫ 2π

0

dϕ

[
Re
[
(E

(p)
j1
· n) E

(p)
j2

∗]
+ c2Re

[
(B

(p)
j1
· n) B

(p)
j2

∗]
− 1

2

(
(E

(p)
j1
· E(p)

j2

∗
)n + c2(B

(p)
j1
· B(p)

j2

∗
)n
)]
,

(28b)

Fj1 j2 being the force contribution due to the incidence
of the two plane waves j1 and j2, which can propa-
gate either along similar or opposite directions. Fol-
lowing the methodology proposed by Grzegorczyk and
Kong [78, 79] we derive its expression for two incident
plane waves with different complex amplitudes, leading

to F
(p)
j1 j2

= Im
[
F̃

(p)
j1 j2

]
ex + Re

[
F̃

(p)
j1 j2

]
ez with

F̃
(p)
j1 j2

= PincK
∣∣∣Ej1(p)

0

∣∣∣ ∣∣∣Ej2(p)
0

∣∣∣ P(p)
j1,j2

e−iΦj1j2

×
∞∑
l=0

Λ
(p)
l Im

[
D

(p) ∗
l D

(p)
l+1 e−i(l+1/2)(φj1−φj2 )

]
,

(29)

where K = 4(n2 − 1)/πcRnw depends on the nanowire

properties. The amplitudes E
j(p)
0 = Ej0 A(+,p) and

E
j(p)
0 = Ej0 B(−,p) depend on the plane wave expansion

of the Gaussian beam through Ej0 and on the intra-cavity
amplitudes field through A(+,p) and B(−,p). The coef-

ficient P(p)
j1,j2

= ±1 is a factor depending on the polar-
ization and on the incidence directions of the two plane
waves (see Appendix for details). The angle Φj1j2 char-
acterizes the spatial orientation of each Fj1 j2 force term,
it is given by

Φj1j2 = Ψ(j1) −Ψ(j2) + (κj1 − κj2) · ρ0 +
φj1 + φj2

2
,

(30)

where φj gives the orientation of the wave vector κj in the
(xz) plane (see Figure 1), Ψ(j) is the phase of the complex

amplitude E
j(p)
0 , and ρ0 is the nanowire position in the

(xz) plane. In this expression, the propagation of the
field in the two sub-cavities is taken into account through

(Ψ(j1) + κj1 · ρ0)− (Ψ(j2) + +κj2 · ρ0). In Eq. (29), Λ
(p)
l

and D
(p)
l involve Bessel and Hankle functions of first kind

and only depend on the nanowire diameter and refractive
index and on the operating wavelength (see Appendix for
details).

Fig. 6(ef) shows the optomechanical force field, com-
puted along both transversal (x) and longitudinal (z) di-
rections. Here we considered a nanowire radius Rnw =

65 nm, a perpendicular polarization of the injected and
intra-cavity light fields, and an incoming optical power
of 1µW. Each incident Gaussian field is expanded onto 9
plane wave components while the Mie expansion is lim-
ited to the 5th order term, leading to a calculation time of
the order of 10 minutes on a regular computer for Fig. 6
(additional details on the simulation procedure and pa-
rameters can be found in Appendix ). Along the cavity
axis, we observe the typical λ/2 periodicity due to the
intra-cavity field structure with a repulsive (attractive)
character close to the nodes (antinodes). A cut of the
force field along the z cavity axis (dashed line in Fig. 6(e))
is shown in Fig. 4(f) and corresponds to the force at res-
onance for the LZ map shown in Fig. 4(d). We find a
very good qualitative and quantitative agreement with
the experimental work of ref. [12], the optical force along
the cavity axis being of the order of the fN for an input
power of 1µW. On an ascending (descending) branch of
the LZ map, the transfer matrix formalism shows that
the intra-cavity field is mainly localized in the associated
right (left) sub-cavity, leading to a negative (positive) op-
tical force. The slight asymmetry between the maximum
and minimum values of Fz is here due to the fact that the
cavity is optically pumped from the left side, leading to
a better coupling to the resonance of the left sub-cavity.
We note that this effect is not the only reason for the
experimental asymmetry found in [12] which is also due
to a slight asymmetry in the reflectivities of the cavity
mirrors (RL 6= RR), as demonstrated in complementary
simulations based on the same formalism. Concerning
the force Fx along the transverse direction (one order of
magnitude smaller than Fz), we observe attractive forces
toward the antinodes and smaller lateral repulsive forces
from the nodes. The lateral optomechanical force field
thus presents a significant shear character with a curl
reaching 1 nN.m−1 in the situation of Figure 6 (at the
location indicated by ? symbol). Note that shear force
fields are known to break the nanowire eigenmodes or-
thogonality, leading to the violation of the fluctuation
dissipation relation [62] and generating a topological in-
stability [58]. We believe that the prolongation of those
studies in such a cavity nano-optomechanical configura-
tion, and at very low photon numbers, is certainly of
great interest. Additional results in the case of a smaller
nanowire (Rnw = 10 nm) and parallel polarization of the
light can be found in Appendix , showing attractive forces
toward intensity maxima in both directions, as expected
from a dipole-like approximation. Another important as-
pect is the sawtooth-like profile of Fz which is due to the
spatial dependence of the dissipative coupling strength.
At an antinode, the intra-cavity field is strongly affected
by the presence of the nanowire (see ), leading to a strong
decrease of the intra-cavity field and then of the opti-
cal force. Complementary to Section , it highlights the
essential balance between the dispersive and dissipative
coupling required to reach new regimes where a small
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intra-cavity photon number would have a significant im-
pact on the nanowire. This observation also underlines
that the simple knowledge of g0 is not sufficient to charac-
terize the optomechanical force field experienced by the
nanowire (which would have otherwise followed a sinu-
soidal profile).

Additionally, it is worth mentioning the major im-
pact of the nanowire radius on the structure of the opti-
cal force, as expected from Mie resonances. This opens
the door to a large variety of configurations and a new
phenomenology which cannot be observed in other 1D-
like optomechanical systems such as membrane in the
middle experiments. Fig. 7(a) presents the z-position
(x0 = 0) and nanowire radius dependence of the optical
force per intra-cavity photon number for a perpendicu-
lar polarization of the light. It presents a maximum for
a nanowire radius close to 230 nm, in agreement with
the relatively large static single photon cooperativity ob-
served for NW 4 (Rnw = 225 nm, C(1) = 0.14) in the
perpendicular case (see Fig. 10 in Appendix ).

Finally, we show in Fig. 7(b) the radius and position
dependence of the optomechanical coupling strength Gz,
while the grey lines indicates locations where Gz = 0
(and Fz = 0 in (a)). The large discrepancies observed
at sufficiently large diameters further underlines the im-
portance of calculating the optical force independently
from the optomechanical coupling strength for nanowire
in the middle systems as already discussed above. Indeed,
we clearly observe no agreement between the sign of Fz
and Gz, breaking down the naive Hamiltonian approach
where Fz = −~GzNcav, Ncav being the intra-cavity pho-
ton number. It means that for in the middle configu-
ration, the knowledge of g0 is not sufficient to infer the
optical force applied on the resonator and then to eval-
uate the impact of a single intra-cavity photon. This
shows first that a proper Hamiltonian approach of such
systems is nowadays still lacking, while highlighting at
the same time the importance of performing direct force
measurements to fully characterize both facets of the op-
tomechanical coupling as previously stressed in ref. [12].

CONCLUSION AND PERSPECTIVES

In this paper we have studied the optomechanical sys-
tem made of a sub-wavelength-sized nanowire inserted in
a small mode volume optical cavity. Using the Mie for-
malism and the fact that the set of Hermite-Gaussian
mode forms a complete orthogonal basis of the two-
dimensional propagating fields, we derived the reflection,
transmission and scattering coefficients between different
cavity modes, and how they depend on the nanowire po-
sition within the cavity. This lays the foundations for
a complete study of the nanowire in the middle system
based on higher order and multiple optical modes, which
is an essential step prior to investigate the quantum light
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FIG. 7. Position and nanowire radius dependence of the op-
tical force per intra-cavity photon (a) (perpendicular light
polarization, 1µW input power) and of the parametric cou-
pling strength along z (b). These simulations have been done
for a nanowire on the cavity axis (x0 = 0). The cavity central
node is located at z = 0 and the pump direction propagates
along +ez. The grey lines indicate positions where Fz = 0
and Gz = 0 illustrating that the knowledge of the coupling
strength Gz is not sufficient in NIM system to infer the op-
tomechanical force exerted on the resonator. Results for a
parallel light polarization can be found in Appendix .

field fluctuations in such a complex system, which lies
beyond the scope of this paper.

In a second time we restricted our study to the situa-
tion where only the fundamental Gaussian cavity mode
is addressed, the scattering towards others mode being
considered as a loss channel. We examined how the
presence of the nanowire shifts the cavity resonance,
which allows to evaluate the vectorial optomechanical
coupling strength g0, demonstrating for this system a
ratio δz(1)/δzzpf = 2gz0/Ωm of the order of 104 for exist-
ing nanowires. This highlights the possibility to achieve
the adiabatic single intra-cavity photon regime of cavity
optomechanics, which was shown to become within ex-
perimental reach at modest cryogenic temperature (4 K)
despite the residual thermal position fluctuation of the
nanowire, then motivating the development of such an ex-
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perimental configuration [69]. This analysis has also sur-
prisingly revealed the existence of positive cavity shifts,
a situation where the cavity length has to be increased in
order to match the optical resonance condition. Prelim-
inary work shows it is a consequence of the geometry of
the system where a one dimensional scatterer is inserted
inside the cavity. This could lead to original Casimir
forces that should be observable making use of the very
high force sensitivity of the nanowire [12, 69].

Next, we have demonstrated the possibility to observe
a static bistability close to the single photon scale, show-
ing that it can be reached for only 7 intra-cavity photons
in the optimal configuration. We suggest possibilities to
reduce this number, for example by ingenering the op-
tical mode geometry in order to minimize the induced
nanowire losses which are responsible of a decrease of
the optomechanical back action. Another promissing ap-
proach consists in functionalizing the nanowires at their
extremity with a sub-micron sphere to maximize the op-
tical interaction while minimizing the losses. Moreover,
in this configuration which largely operates in the adi-
abatic regime where the cavity field instantaneously re-
acts on mechanical time-scales to a displacement of the
nanowire (Ωm � κcav), the large cooperativity achieved
leads to interesting applications in quantum optics. In-
deed, it opens the road to a broadband squeezing of the
outgoing cavity field in the cavity bandwidth [70], and
then to the possibility to generate non Gaussian state of
the light [13] for small photon numbers.

Finally, we investigated the two-dimensional specifici-
ties of the nanowire in the middle configuration. We first
demonstrated the possibility to obtain a direct picture of
the intra-cavity field by locking the cavity length on the
transmission signal while scanning the nanowire in the
cavity mode volume. Secondly, we gave an analytic ex-
pression of the vectorial optomechanical force applied by
the intra-cavity field on the nanowire, which was verified
to lead to a qualitative and quantitative agreement with
the experimental work of ref. [12]. It also highlights the
limitations of traditional 1D like parametric analysis to
describe the reverse optomechanical interaction for in the
middle systems, due to the dependence of the nanowire-
dressed optical modes spatial profiles and pumping effi-
ciency with the scatterer position. Contrary to historical
1D-like optomechanical systems where one of the cavity
mirror oscillates around its equilibrium position, the op-
tical force can not be obtained from the single knowledge
of the parametric coupling strength but requires a proper
experimental investigation as performed in ref. [12] or a
specific calculation as done here.
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APPENDIX

Optical properties of SiC nanowire

In this Appendix we briefly present the Mie formalism
used to described the scattering of an electromagnetic
field on an infinite nanowire. Following the procedure
developed by C. Bohren [64], we give the expressions of
the scattered field due to the normal incidence of a sin-
gle plane wave (incident wave vector orthogonal to the
nanowire axis). In a second time, we define the one di-
mensional cross section of a nanowire characterizing the
angular emission diagrams of the scattered field.

Mie formalism for an infinite cylinder

The nanowire is modeled as an infinite lossless dielec-
tric (non magnetic) cylinder collinear to the y axis and
located at r0 = x0 ex + z0 ez. The incident field onto
the cylinder is assumed to be a single plane wave with
a wave vector ki = 2π/λ ei belonging to the (xz) plane
(ki,y = 0), its direction being characterized by the inci-
dent angle φi. The polarization of the electric field can
be either parallel or orthogonal to the cylinder axis, lead-
ing to the so-called parallel and perpendicular cases. To
describe this system we make use of the cylindrical coor-
dinates (r, ϕ, y) centred at the nanowire position r0, as
shown Fig. 2(a). It is important to note that in order
to match the coordinates system used in previous ex-
perimental papers [58–60, 62], (er, eϕ, ey) is an indirect
orthonormal system, which leads to an additional minus
sign in the expression of the rotational operator. This ex-
plains the differences between the results presented here
and what can be found in the literature [64, 79] when
(er, eϕ, ey) is direct.

The Mie formalism consists in solving the vectorial
Helmholtz equation to obtain the expressions of the scat-
tered field as well as the field inside the cylinder. First
one obtains the general form of the solutions in terms
of the cylindrical vector harmonics. In a second time,
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expanding the incident plane wave on these vector har-
monics and using the continuity equations of the elec-
tromagnetic field at the cylinder interface leads to the
expressions of the incident, scattered and internal fields.
In the case of a parallel polarization of the incident field
along − ey, the electric fields read as

E
‖
i (r) = E0 eiki·(r0+r)(−ey)

=

+∞∑
l=−∞

El N(1)
l (r, k), (31a)

E
‖
1(r) =

+∞∑
l=−∞

El f‖l N
(1)
l (r, nk), (31b)

E‖s (r) = −
+∞∑
l=−∞

El b‖l N
(3)
l (r, k), (31c)

while in the case of a perpendicular polarization along
− eφi , the electric fields is given by

E⊥i (r) = E0 eiki·(r0+r)(−eφi)

= −i
+∞∑
l=−∞

El M
(1)
l (r, k), (32a)

E⊥1 (r) = −i
+∞∑
l=−∞

El g⊥l M
(1)
l (r, nk), (32b)

E⊥s (r) = i

+∞∑
l=−∞

El a⊥l M
(3)
l (r, k), (32c)

where k and nk are the wave vectors in the background
(the vacuum here) and in the cylinder respectively. The
cylindrical vector harmonics are obtained using the so-
lution of the scalar Helmholtz equation and −ey as the
pilot vector,

M
(η)
l (r, k) = k

(
il
Zl(kr)

kr
er − Z ′l(kr)eϕ

)
eilϕ, (33a)

N
(η)
l (r, k) = −kZl(kr)eilϕey, (33b)

where the prime denotes a derivative with respect to the
argument. In Eq. (33), Zl is the Bessel function of the
first kind Jl if η = 1 while it is the Hankel function of the

first kind H
(1)
l if η = 3. The El coefficient appearing in

Eq. (31) and (32) is obtained from the projection of the
incident field onto the cylindrical vector harmonics given
above and reads as

El =
E0(r0) (−i)le−ilφi

k
, (34)

where E0(r0) is the complex amplitude of the incident
plane wave at the cylinder position. The other coeffi-
cients present in Eq. (31) and (32) are obtained from the
continuity relations at the cylinder interface and read as

b
‖
l =

Jl(nρR)J ′l (ρR)− nJ ′l (nρR)Jl(ρR)

Jl(nρR)H
(1)′

l (ρR)− nJ ′l (nρR)H
(1)
l (ρR)

, (35a)

f
‖
l =

Jl(ρR)− β‖l H
(1)
l (ρR)

nJl(nρR)
, (35b)

a⊥l =
nJl(nρR)J ′l (ρR)− J ′l (nρR)Jl(ρR)

nJl(nρR)H
(1)′

l (ρR)− J ′l (nρR)H
(1)
l (ρR)

, (35c)

g⊥l =
Jl(ρR)− α⊥l H

(1)
l (ρR)

n2Jl(nρR)
, (35d)

where ρR = kRnw. Note that when using the continuity
relations, we consider E1 and E2 = Ei+Es as the internal
and external field respectively, meaning that the total
field outside the nanowire is the sum of the incident and
scattered field.

Expression of the magnetic fields

The expressions of the magnetic field for both po-
larizations can be directly obtained from the Maxwell-
Faraday equation and from the vector harmonics identi-
ties ∇×Nl = kMl and ∇×Nl = kMl. For a parallel
polarization of the incident field along − ey, we have

B
‖
i (r) = − i

c

+∞∑
l=−∞

El M(1)
l (r, k), (36a)

B
‖
1(r) = − i

c
n

+∞∑
l=−∞

El f‖l M
(1)
l (r, nk), (36b)

B‖s (r) =
i

c

+∞∑
l=−∞

El b‖l M
(3)
l (r, k), (36c)

while for a perpendicular polarization along − eφi , the
magnetic fields are given by

B⊥i (r) = −1

c

+∞∑
l=−∞

El N
(1)
l (r, k), (37a)

B⊥1 (r) = −1

c
n

+∞∑
l=−∞

El g⊥l N
(1)
l (r, nk), (37b)

B⊥s (r) =
1

c

+∞∑
l=−∞

El a⊥l N
(3)
l (r, k), (37c)

where the vector harmonics are given Eq. (33) and the
other coefficients Eq. (34) and (35).

Emission diagrams of an infinite cylinder

We now define the angular one dimensional cross sec-
tion dσ1D/dϕ characterizing the angular dependence of



20

the scattered light. It is given, at a distance r, by the
ratio between the outgoing scattered power per unit of
angle and length (along y), and the incident flux (the
intensity of the incident Poynting vector),

dσ1D

dϕ
=
rΠs · er

|Πi|
, (38)

where Πs and Πi are the scattered and incident Poynting
vectors given by Π = Re [E ∧ B∗] /2µ0. Using the ex-
pressions of the field given previously, we obtain for each
polarizations

dσ
‖
1D

dϕ
= rRe

[
i
∑
l,m

b
‖
l b
‖
m

∗
H

(1)
l (kr) H(1)′

m

∗
(kr)

× ei(l−m)(ϕ−φi−π2 )

]
, (39a)

dσ⊥1D

dϕ
= rRe

[
i
∑
l,m

a⊥l a⊥m
∗
H

(1)
l (kr) H(1)′

m

∗
(kr)

× ei(l−m)(ϕ−φi−π2 )

]
, (39b)

where the sum over l and m extend from −∞ to +∞.
Fig. 2(cd) in the main text shows the angular emission
diagrams resulting from Eq. (39) for an excitation wave-
length λ = 770 nm, an incident angle φi = 0 and for
three different cylinder radius. Here, like in the rest of
this paper, we only consider 11 terms in each sum over
the cylindrical harmonics ({l,m} ∈ {−5, 5}2) which is
sufficient considering the working wavelength and cylin-
der radius smaller than 250 nm.

The reflected, transmitted and scattered one dimen-
sional cross-section defined in the main text are given by

σR =

∫ θcol/2

−θcol/2
dϕ

dσ1D

dϕ
, (40a)

σT =

∫ π+θcol/2

π−θcol/2
dϕ

dσ1D

dϕ
, (40b)

σscat =

∫ π−θcol/2

θcol/2

dϕ
dσ1D

dϕ
+

∫ −θcol/2
π+θcol/2

dϕ
dσ1D

dϕ
. (40c)

where θcol is the collection angle. Fig. 2(cd) in the main
text shows these three quantities as function of the cylin-
der radius for both polarizations of the incident plane
wave and for numerical apertures NA = 0.15 (θcol ≈ 17˚)
and NA = 0.7 (θcol ≈ 90˚).

Numerical considerations

The work presented in this paper is based on the nu-
merical evaluation (using Python 3 and usual packages)

of the outgoing (transmission, reflection and scatter) and
intra-cavity fields (used to compute the optical force).
We present here the idea of the procedure used to perform
the simulations and give additional information about the
numerical parameters used.

Unperturbed intra-cavity field The intra cavity field is
assume to be in the fundamental Gaussian Hermite mode
given Eq. (42) and we focus on the 32th mode correspond-
ing to an unperturbed cavity length L0

cav ≈ 12.4µm with
a node of the field at the cavity center (z = 0). The
cavity length (always close to L0

cav), the curvature radius
of the mirrors Rc = 28µm and the optical wavelength
λ = 770 nm, fully constrains the mode profile leading to
a beam waist w0 = 1.7µm at z = 0 and a Rayleigh length
zR = 11.5µm.

Reflection and transmission coefficient of a nanowire
in a Gaussian beam The calculation of the reflection
and transmission coefficients given Eq. (19) allows to ob-
tain the transfer matrix of the nanowire used to propa-
gate the intra-cavity field through the whole system.

In the approximated method, we assume that the
nanowire stays in a spatial area where the Gaussian beam
does not diverge (in the waist of the beam). We then con-
sider that the incident field is equivalent to a single plane
wave incidence with a wave vector ki = k ez, an ampli-

tude E
(+)
0,0 (r0) at the nanowire position obtained from

Eq. (2) (with A0 =
√

2/πw2
0), and a polarization vector

eP which can be parallel (e
‖
P = −ey) or perpendicular

(e⊥P = ex) to the nanowire axis. It generates a scattered
field calculated on the cavity mirrors surface (located at
±Lcav/2 with transverse size D) using the Mie formal-
ism presented in Appendix . The overlaps between the
scattered field and the Gaussian cavity modes on the cav-
ity mirrors surface, i. e. the surface integrals appearing
Eq. (19), are calculated numerically using the spherical
coordinates associated to each cavity mirrors. For a func-
tion f defined on a spherical surface S of curvature radius
Rc, we have∫∫

S d2r f(r) = R2
c

∫ Φf
Φi

dΦ
∫ θf
θi

dθ f [r(Φ, θ)] , (41)

where in our case, the azimuthal angle Φ varies between
Φi = 0 and Φf = 2π. The polar angle range depends on
the considered integration surfaces and is characterizes
by the curvature radius of the mirrors and by their trans-
verse size. For the right integration surface SR, it varies

between θi,R = 0 and θf,R = arccos
(√

1−D2/4R2
c

)
while for the left integration surface SL we have θi,L =
π − θf,R and θf,L = π. Thus, to perform the numerical
integration, we only need to express the Cartesian co-
ordinates (x, y, z) and cylindrical coordinates (r, ϕ, y) in
terms of the spherical angles (Φ, θ). The mesh is chosen
sufficiently small to resolve the phase oscillation of the
fields overlap. We then construct a database of the reflec-
tion and transmission coefficients for different position of
the nanowire in the beam and for different nanowire ra-
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dius, using the experimental parameters used in ref [12]
(Lcav = 12µm, Rc = 28µm, D = 12µm, λ = 770 nm
and n = 2.61). Moreover, since it is essential to con-
sider a finite number of terms in the cylindrical expan-
sion of the scattered field for a numerical evaluation, we
restrict the sum appearing in Eq. (21) to the 11 ”first”
terms, l ∈ {−5, 5}, which is sufficient when considering
nanowires of radius smaller than 300 nm for an excitation
wavelength at 770 nm.

The second and exact way to compute these coefficients
consists in expanding the Gaussian beam onto the plane
wave spectrum (see Appendix ), then evaluating the to-
tal scattered field as the sum of all the scattered fields
due to the different incidences. For that purpose it is
essential to be able to compute the scattered field due to
a glancing incidence as detailed in [64], paying attention
to the axis choice performed here. The discretization of
the Gaussian beam is done following the procedure given
in . In practice it is sufficient to keep only 9 terms in
the expansion along each directions (with a discretization
step ∆x/y = 0.75µm−1) leading to a total of 81 terms.
As a consequence, this method require much longer cal-
culation time, and was simply used to ensure the validity
of the above approximation.

Reflected, transmitted and scattered fields For an SiC
nanowire located at r0 = x0 ex + z0 ez in an optical cav-
ity of length Lcav, the cavity reflection and transmission
coefficients are obtained using the transfer matrix for-
malism by solving Eq. (23). We chose symmetric cavity
mirrors described as lossless beam splitters with intensity
reflection coefficients RL = RR = 0.994. The amount of
light scattered out of the cavity is then evaluated using
the energy conservation.

LZ maps The so called LZ maps are obtained scan-
ning the nanowire position along the cavity axis while
scanning at the same time the cavity length around the
resonance. The cavity finesse, which depends on the
nanowire position along z due to the spatial dependence
of the dissipative coupling, is evaluated by fitting the cav-
ity transmission with a Lorentzian profile. As long as the
nanowire induced cavity shift remains small compare the
free spectral range of the cavity (LFSR = λ/2 = 385 nm
equivalent to ωFSR ≈ 12 THz), we observe no deviation
from the Lorentzian profile.

Locked XZ map For a given nanowire position, the
cavity lock on the transmission signal is done by scan-
ning the cavity length around the optical resonance, then
fitting the transmission with a Lorentzian profile to ex-
tract the resonant length and finesse. The cavity length
is adjusted for every nanowire position producing the XZ
locked maps shown Figure 6 and 11.

Optical force evaluation The optical force is calcu-
lated from the intra-cavity field using the Maxwell stress
tensor[78–80]. The amplitudes of the intra-cavity fields
propagating along ±z are first obtain using the transfer
matrix formalism Eq. (26). We then consider two Gaus-

sian beams with the amplitudes obtained previously in-
coming on the nanowire. The total scattered field on the
nanowire surface is evaluated by expanding the Gaus-
sian beams on the plane wave spectrum and summing
the scattered fields due to each contributions. The op-
tical force is finally obtained using the results of . The
Gaussian beam discretization is done following the pro-
cedure described in where we keep only 9 terms in the
expansion. The incoming optical power on the cavity
Pinc appearing in Eq. (29) depends on the total injected
power P 0

inc = 1µW, on the coupling coefficient between
the laser and the optical fiber (ηfiber = 0.8) and on the
coupling coefficient between the optical mode in the fiber
and the cavity mode (Tin = 0.5), Pinc = ηfiber Tin P

0
inc.

Similarly to all the other parameters, ηfiber and Tin have
been chosen to be close to the experimental parameters
of ref. [12].

Plane wave expansion of the fundamental
Hermite-Gaussian mode

Expansion of a scalar Gaussian beam on the plane
wave spectrum in the paraxial approximation

We consider the fundamental Hermite-Gaussian mode
simply refereed in the following as the Gaussian beam for
simplicity. Its expression given Eq. (2) in the paraxial
approximation becomes for the fundamental mode (nx =
ny = 0) propagating along +z,

E
(+)
0,0 (r) =

√
2

πw2
0

w0

w(z)
e
− r2⊥
w2(z) ei[kz−Ψ(z)+k

r⊥
2R(z) ],

(42)

where k = 2π/λ, r⊥ = x ex + y ey, w0 is the waist
of the beam and where the transverse spreading w(z),
the Gouy phase Ψ(z) and the curvature radius of the
beam are given in the main text (). The normaliza-
tion factor A0,0

0 =
√

2/πw2
0 is obtained considering a

planar integration surface in the scalar product since
w(±Lcav/2)� Rc.

In the paraxial approximation, valid for a weakly di-
verging beam, the plane wave expansion of the field

E
(+)
0,0 (r) given Eq. (42) reads as

E
(+)
0,0 (r) =

∫∫
||k||=k

dkxdky E0(kx, ky) eik(kx,ky)·r,

(43)

where E0(kx, ky) = w0

(2π)3/2
e−

w2
0
4 (k2x+k2y) is the amplitude

associated to the wave vector k(kx, ky) = kx ex + ky ey +√
k2 − (k2

x + k2
y) ez.

It is worth mentioning that a vectorial field of the

form E
(+)
0,0 = E

(+)
0,0 eP , where eP is the polarization vec-

tor standing in the (xy) plane, still satisfies the vectorial
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Helmholtz equation but is not an exact solution of the
Maxwell-Gauss equation (for example for eP = ex or
eP = −ey).

Expansion of a vectorial Gaussian beam on the
plane wave spectrum

To introduce polarization aspects we follow the proce-
dure developed by Igelsias and Sàenz in ref. [81]. The
idea is to consider an independent polarization vector for
each plane waves in (43) such as

E
(+,p)
0,0 (r) =

∫∫
||k||=k

dkxdky E0(kx, ky) eik(kx,ky)·r

× e
(p)
P (kx, ky), (44)

where the polarization vector e
(p)
P (kx, ky) is fully deter-

mined by the orientation of the wave vector k(kx, ky)
and by the polarization choice (parallel or perpendicu-
lar). Defining the incidence angles φ and ξ as in Figure 8,
the incident wave vector and polarizations vectors read
as

k(φ, ξ) = k (− sin ξ sinφ ex + sin ξ cosφ ez − cos ξ ey) ,
(45a)

e
‖
P (φ, ξ) = cos ξ sinφ ex − cos ξ cosφ ez − sin ξ ey,

(45b)

e⊥P (φ, ξ) = cosφ ex + sinφ ez. (45c)

It is easy to show that each component of the vecto-

rial field E
(+,p)
0,0 satisfy the scalar Helmholtz equation and

then that the total field satisfies the vectorial Helmholtz
equation ∇2E

(+,p)
0,0 + k2E

(+,p)
0,0 = 0. Moreover, due to

the relation between the wave vectors and the polariza-
tions vectors, it also satisfies the Maxwell-Gauss equa-

tion, ∇ ·E(+,p)
0,0 = 0.

The orthogonality and normalization of the two eigen-

modes E
(+,‖)
0,0 and E

(+,⊥)
0,0 can be demonstrated similarly

to Eq. (3) calculating〈
E

(+,p)
0,0 |E

(+,p′)
0,0

〉
=

∫∫
S

d2 rE
(+,p)
0,0 (r) · E(+,p′)

0,0

∗
(r)

= δp,p′ . (46)

The last equality has been obtained by performing the
change of variable (kx, ky) → (φ, ξ) in (44) and consid-
ering the integration surface S to be be an infinite plane
orthogonal to the z axis.

Finally, the integral representation (44) can be dis-
cretized using the rectangle rule leading to

E
(+,p)
0,0 (r) ≈

∑
jx,jy / ||kjx,jy ||=k

Ejx,jy0 eikjx,jy ·r e
(p)
P,jx,jy

,(47)

where the wave vector of each plane wave contri-
bution is given by kjx,jy = kx,jxex + ky,jyey +

√
k2 − (k2

x,jx
+ k2

y,jy
)ez with kx,jx = jx∆kx and ky,jy =

jy∆ky , ∆kx/y being the discretization step used in
the rectangle rule along each axis while jx/y are in-

tegers. The plane wave amplitudes are Ejx,jy0 =

(w0/(2π)3/2)∆kx∆ky e
−w

2
0
4

(
k2x,jx+k2y,jy

)
and the polariza-

tion vectors for each polarization are given Eq. (45)
where the incidence angles φ(jx,jy) and ξ(jx,jy) can be
expressed in terms of the wave vector kjx,jy compo-
nents. In practice, because of the weak divergence of
the intra-cavity field, it is sufficient to consider 9 terms
in each sum appearing in (47) with a discretization step
∆x/y = 0.75µm−1 leading to a total of 81 terms.

FIG. 8. Infinite cylinder under plane wave illumination. The
incidence angles φi and ξi defined the incident wavevector ki.
Considering additionally a parallel or perpendicular polariza-
tion, the polarization vector eP is also fully determined.

Vectorial Gaussian beam expansion for force
calculation

We now realize the plane wave expansion of a funda-
mental vectorial Gaussian beam propagating along ±z
suitable for optical force calculation in an NIM system.
As already mentioned in the main text, because their is
no optical force on the nanowire in the y direction for
symmetry reasons, it is correct to restrict the plane wave
expansion to the (xz) plane. Physically, this approxima-
tion is equivalent to neglect the contribution of the inci-
dent field polarized along z due to the beam divergence
in the y direction. Mathematically, it means that the
beam waist dimension along y (noted w0y) can be chosen
arbitrary large. In that case, the plane wave expansion
of a scalar Gaussian beam in the paraxial approximation
leads to

E
(±)
0,0 (r) ≈ f(y) E

(±)
(2D) 0,0(x, z), (48)
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where f(y) = (2/πw2
0y)1/4 e−(y/w0y)2 has been defined

such as
∫∞
−∞ dy |f(y)|2 = 1 and

E
(±)
(2D) 0,0(x, z) =

√
w0

(2π)3/4

∫ k

0

dkx e−(w0kx
2 )

2

e
±i

(
kxx+
√
k2−k2xz

)
,

(49)

with k = 2π/λ.
The polarization of the beam is introduced following

the same procedure as in Appendix . After discretization
of the integral appearing in (49) we get

E
(±)
0,0 (r) ≈ f(y)

∑
j / ||κj ||=k

Ej0 eiκ
(±)
j ·ρ e

(±,p)
P,j . (50)

where for each plane wave contribution the amplitude,
wave vector and polarization vectors are given by

Ej0 =

√
w0

(2π)3/4
∆kx e

−
(
w0kx,j

2

)2

, (51a)

κ
(±)
j = k

(±)
x,j ex ±

√
k2 − k

(±)
x,j

2
ez, (51b)

e
(±,‖)
P,j = −ey, (51c)

e
(±,⊥)
P,j = ± (cosφj ex + sinφj ez) . (51d)

with k
(±)
x,j = ±j∆kx (j ∈ Z), ∆kx the step used during

the integral discretization and ρ = x ex+z ez. The angle
φj characterises the incidence angle of each plane wave
and is given, depending of the propagation direction of
the beam, by

φ
(+)
j = − arctan

 k
(+)
x,j√

k2 − k
(+)
x,j

2

 , (52a)

φ
(−)
j = π + arctan

 k
(−)
x,j√

k2 − k
(−)
x,j

2

 . (52b)

In Eq. (51d), the ± factor is due to the angle dependence
of the polarization vector and accounts for the fact that in
cavity, two beams propagating along opposite directions
must have the same polarization. For instance, in the

case φ(+) = 0 and φ(−) = π, we have e
(+,⊥)
P = e

(−,⊥)
P =

ex which is valid. It is at the origin of the P(p)
j1,j2

factor
appearing in the force expression Eq. (29) and detailed
in Appendix .

Additional simulation results

Resonant cavity shifts for perpendicular polarization
of the light

We show Fig. 9 the resonant cavity shift as function of
the nanowire radius and position along z for a perpen-
dicular polarization of the light. Similarly to the parallel

case, we observe the existence of positive resonant cavity
shifts.
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FIG. 9. Resonant cavity shift maps for different nanowire
radius, positions on the cavity axis and perpendicular polar-
ization of the light. The black solid and dashed lines indicate
positions of maximum coupling strength Gz and maximum
ratio G2

z/κ characterizing the single photon static coopera-
tivity, κ being the linewidth of the cavity. Here we consider a
cavity finesse without nanowire F0 ≈ 50000 which is the high-
est value one can reach using the experimental configuration
of ref. [12].

Single photon optomechanics for perpendicular
polarization of the light

Here we present the results of Section discussing op-
tomechanical effects at the single photon scale in the
case of a perpendicular polarization of the light. Fig. 10
shows in terms of the nanowire dimensions the maximum
value of the ratio 2gz0/Ωm (a), the value of δz(1) (b) the
blue lines indicating the nanowire dimensions ensuring
δz(1) = ∆z(th) for different bath temperatures, and the
maximum value of the single photon parametric cooper-
ativity C(1). On these three plots, the grey dashed lines
indicate the iso-frequency of the nanowire fundamental
vibrational mode.

2D simulation results on a small nanowire

We show Fig. 11 the XZ maps obtained for a cav-
ity length locked at resonance, a nanowire of radius
Rnw = 10 nm, and a parallel polarization of the light.
It corresponds to the case of a small dispersive and dis-
sipative coupling between the oscillator and the light,
the nanowire only locally probing the intra-cavity field
structure. At a node of the unperturbed cavity shift we
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FIG. 10. Dependence on the nanowire dimensions of
δz(1)/δzzpf = 2gz0/Ωm (a), of the single photon deformation

δz(1) (b), and of the static single photon parametric coopera-

tivity C(1) = 2 gz0
2 /κcavΩm (c) for a perpendicular polariza-

tion of the light. The grey dashed lines indicate the funda-
mental vibrational mode iso-frequencies. In (b), the blue lines

show the nanowire dimensions ensuring δz(1) = ∆z(th) for dif-
ferent bath temperatures while the black dotted line indicate
nanowire dimensions for which δz(1) = Rnw. The diamond
and star markers correspond to a relevant nanowire for cryo-
genic temperature experiment (NW 1: Rnw = 100 nm and
Lnw = 500µm) and to the nanowire used in ref. [12] (NW
2: Rnw = 65 nm and Lnw = 70µm) respectively. The two
black circles indicate two nanowires recently studied in our
group: NW 3 (Rnw = 50 nm, Lnw = 200µm) and NW 4
(Rnw = 225 nm, Lnw = 1400µm). In (c) we also show
nanowire dimensions corresponding to a static single pho-
ton parametric cooperativity of one (solid black line) and to
a dynamical single photon parametric cooperativity of one
(dashed black line). The dotted red line indicates a static sin-
gle photon parametric cooperativity of one when the nanowire
has been functionalized at its extremity in order to maximize
the optical interaction while minimizing the optical losses.

observe no transmission drop, no cavity shift and no scat-
tered light. On the opposite, the coupling is maximum at
an anti-node where we have a drop of the cavity transmis-

0 -1

0 1Transmission

Cavity shift (nm) Finesse

Scatter

200 nm1µm

N
o

d
e

x

z

N
o

d
e

Lateral force 
Fx (aN)

Axial force 
Fz (aN) -1000 0 1000

a b

c d

e f

200 nm1µm

x

z

-100 0 100

0 500

0 0.4

N
o

d
e

N
o

d
e

FIG. 11. Transmission (a), cavity shift (b), scattered coeffi-
cient (c) and cavity finesse (d) maps obtained when scanning
a nanowire of radius Rnw = 10 nm in the (xz) plane while
locking the cavity at resonance for a parallel polarization of
the light. (ef) Optical force maps along z (e) and x (f) applied
by the intra-cavity field on the nanowire for an input power
of 1µW.

sion associated to a maximum of the cavity shift as well
as a maximum of the scattered light. We note a weak de-
crease of the cavity finesse which remains however larger
than F0/2 (F0 being the finesse of the unperturbed cav-
ity) explaining the absence of rings in the scattered map,
as discussed in the main text.

The optical force field is similar to what one would
obtain if scanning a dipole in the optical cavity. The
nanowire is attracted towards position of high inten-
sity, reflecting the dominance of gradient force for small
nanowire radius and parallel polarization of the light.

Optical force and coupling strength for parallel
polarization

We show Fig. 12 the radius and position dependence
of the optomechanical coupling strength Gz, where the
grey lines indicates locations where Gz = 0 (and Fz = 0
in (a)). Here again it underlines the importance of calcu-
lating the optical force independently from the optome-
chanical coupling strength for nanowire in the middle sys-
tem as already discussed in the main text.
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FIG. 12. Position and nanowire radius dependence of the
optical force for a parallel polarization of the light and an
input power of 1µW (a) and of the coupling strength along
z (b). The cavity central node is located at z = 0 and the
pump direction propagates along +z. The grey lines indicate
positions where Fz = 0 and Gz = 0.

Optical force on a nanowire

We give below the explicit formulas of the different co-
efficients appearing in the expression of the optical force
Eq. (29) due to the incidence of two plane waves of am-

plitudes E
j1(p)
0 and E

j2(p)
0 .

The coefficient P(p)
j1,j2

depends on the polarization and
on the incidence directions of the two plane waves. It is
given by

P(p)
j1,j2

= σ
(p)
j1
σ

(p)
j2
, (53)

where σ
(p)
j depends on the polarization choice and on the

propagation direction of the plane wave j. For parallel

polarization, σ
(‖)
j = 1, reflecting the fact that the polar-

ization vector of the Gaussian beam plane wave expan-
sion given Eq. (51c) does not depend on the propagation
direction. On the opposite, for perpendicular polariza-
tion, the polarization vector of the plane wave expansion
given Eq. (51d) depends on the propagation direction,

leading to

σ
(⊥)
j = 1 if κj · ez > 0, (54a)

σ
(⊥)
j = −1 if κj · ez < 0. (54b)

In other words, it is 1 (-1) if the plane wave j comes
from the plane wave expansion of the Gaussian beam
propagating along +z (−z).

The other coefficients appearing in Eq. (29) are given
by

Λ
(‖)
l =

Jl(nρR)Jl+1(nρR)∣∣∣D‖l+1

∣∣∣2 ∣∣∣D‖l ∣∣∣2 , (55a)

Λ
(⊥)
l =

(
l(l+1)
ρ2R

)
Jl(nρR)Jl+1(nρR) + J ′l (nρR)J ′l+1(nρR)∣∣D⊥l+1

∣∣2 ∣∣D⊥l ∣∣2 ,

(55b)

D
‖
l = k

[
Jl(nρR)H

(1)′

l (ρR)− nJ ′l (nρR)H
(1)
l (ρR)

]
,

(55c)

D⊥l = k
[
J ′l (nρR)H

(1)
l (ρR)− nJl(nρR)H

(1)′

l (ρR)
]
,

(55d)

where n is the refractive index of the nanowire, k = 2π/λ,

ρR = kRnw, and where Jl and H
(1)
l are the Bessel and

Hankle functions of first kind of order l. In these equa-
tions, the prime denotes a derivative with respect to the
argument.

Finally, the minus sign in the exponential characteriz-
ing the force orientation in (29) differs from what can be
found in [78, 79]. This is simply due to the axis choice
performed here.

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt,
Reviews of Modern Physics 86, 1391 (2014).

[2] T. P. Purdy, R. W. Peterson, and C. Regal, Science 339,
801 (2013).

[3] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado,
and J. D. Teufel, Physical Review X 5, 041037 (2015).

[4] D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy,
N. Brahms, and D. M. Stamper-Kurn, Nature 488, 476
(2012).

[5] T. P. Purdy, P.-L. Yu, R. Peterson, N. Kampel, and
C. Regal, Physical Review X 3, 031012 (2013).

[6] T. Palomaki, J. Teufel, R. Simmonds, and K. Lehnert,
Science 342, 710 (2013).

[7] J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Mas-
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