

DEVELOPMENT OF A CONTINUOUS NUCLEAR DEMAGNETISATION REFRIGERATOR (CNDR)

<u>S. Triqueneaux</u>, J. Butterworth, G. Le Roy, S. Midlik, D. Schmoranzer, A. Fefferman

European Research Council

OUTLINE

- Overview
- Thermal resistance issue
- Contact / Welding / Heat Switch issue
- Summary of resistance measurements so far
- Heat Switch thermal characterization: normal and SC states
- Test of the Heat Switch with a single NDS
- Conclusion

OVERVIEW

- Goal is to achieve 1 mK continuously
- Serial configuration is preferred to parallel (refer to David's talk)
 - Twice fewer heat switches
 - More compact
 - Second stage (Nuclear Demag Stage 2 NDS2) with lower fields

THERMAL RESISTANCE ISSUE

D. Schmoranzer *et al., Cryogenics* **110**, 103119 (2020).

- In S-CNDR, performance is limited by the thermal resistance between the 2 NDSs (⇔ electrical R using the Wiedemann-Franz law)
- 10 nW heat load (typ. 5 nW residual losses) and 150 n $\Omega => ~750 \mu K$ operating T according to simulations
- With some margin, we give ourselves a goal of 150 $n\Omega$
- Minimizing R will be helpful, even in a parallel configuration

PRELIMINARY BUDGET

15 individual contributors:

- Bulk materials
- Contacts / Assemblies

NDS to Cu wires Cu wires Cu wires to Cu block Cu block (dismountable) Cu blocks connection Cu block (HS assembly) Cu block to AI heat HS

PRELIMINARY BUDGET

Label	Туре	R (nΩ)	#	Notes
NDS to Cu wires	Brazed	5	2	10 wires => 50 n Ω per wire allowed
Cu wires	Bulk	30	2	For 10 Wires
Cu wires to Cu block	Welded	5	2	10 wires => 50 n Ω per wire allowed
Cu block (dismountable)	Bulk	5	2	Cu with RRR > 1 000
Cu blocks connection	Pressed	10	2	Goal
Cu block (HS assembly)	Bulk	5	2	Cu with RRR > 1 000
Cu block to Al heat HS	Pressed	10	2	Goal
AIHS	Bulk	5	1	Calculated 2 n Ω with RRR = 5000
TOTAL		145		

Major uncertainties = contact resistances Most critical one = AI to Cu

- Is it possible to make a Cu-Cu or Cu-Al joint with a contact res. (R_c) in the $n\Omega$ range ?

For Cu-Cu contacts at 3 kN (M4 compatible), R_c usually > 100 nΩ. Some authors report R_c < 10 nΩ including for Cu-Al contacts.

Goal: dismountable Cu-Cu joint Simple design for preliminary tests

Parameters:

- Rough Polish (RP ⇔ P800) or fine polish (P ⇔ P2000)
- Coating (Ag or Au) or not
- Electro (Ag + Au) or electroless (Ag) plating or evaporation (Au)
- Application of extra compression force (7.5 kN) or not

Notes:

- Use of high RRR bulk Cu is mandatory
- 4 wire measurements can be tricky

Apparent R as function of V pickups position for various R_{bulk} / R_{contact} ratios

Current injected at x/L = 1

- Our measurements (x=0 and x=0.5) showed no discrepancy at 4.2 K

Results:

Sample	R at 4K	Sample	R at 4K
Cu-Cu RP 7.5 kN	$435 \pm 7 \ n\Omega$	Au Dalic P	$5.5 \pm 8.4 \ n\Omega$
🗸 Au Dalic RP	$3.9 \pm 6.1 \ n\Omega$	Au Evap P	$13.7 \pm 8.7 \ n\Omega$
Ag Dalic RP	$5.2 \pm 5.6 \ n\Omega$	Cu-Cu RP	$44 \pm 9 \ n\Omega$
Electroless Ag RP	$47 \pm 9 \ n\Omega$		9 d

- Extra compression not recomended
- Rough polish is sufficient
- Dalic electro plating provides the best results. Au preferred to Ag
- Below 50 nΩ feasible for Cu-Cu contacts with no coating or a simple electroless coating

Impact of multiple connections / disconnections:

2	RP AuDalic	RP AgDalic	P AuDalic
$\begin{array}{c} \text{Dismounted} + 0\\ 09/12/20 \end{array}$	$3.9 \pm 6n\Omega$	$5.2 \pm 6n\Omega$	$5.5 \pm 8n\Omega$
$\frac{\text{Dismounted}+2}{10/06/21}$	$6.7 \pm 7.2n\Omega$	$5.7 \pm 6n\Omega$	$8 \pm 7n\Omega$
$\frac{\text{Dismounted}+3}{18/06/21}$	$5.5 \pm 14n\Omega$	$5 \pm 10n\Omega$	$3.9 \pm 14n\Omega$
$\frac{\text{Dismounted}+0}{23/06/21}$	$4.7 \pm 7n\Omega$	$4.7 \pm 5.3n\Omega$	$7.1 \pm 5.3n\Omega$
Dismounted+1 *air 30/07/21	$2.8 \pm 3.3n\Omega$	$8.9 \pm 3.9n\Omega$	$6.9 \pm 3.4n\Omega$

No measurable change in 6 months including after 1 month with the 2 parts in contact with air

WELDING ISSUE

Goal: low resistivity Cu wire to Cu block assembly

Selected design for a 4 wire assembly after a series of basic tests:

WELDING ISSUE

Results:

	After Annealing & Heat treatment				
Sample	Resistance at 4K for 1 weld $[n\Omega]$ 4-wire				4-wire
	weld	weld	weld	weld	resistance
	n°1	n°2	n°3	n°4	$[n\Omega]$
CuCuWeld7	59 ± 8	69 ± 7	39 ± 17	52 ± 17	13.1 ± 3.6
CuCuWeld8	21 ± 18	32 ± 7	22 ± 14	29 ± 9	6.3 ± 3.5

- Up to 50% discrepancy between the different welds
- Resistances are comparable to that of the bulk material => no major contribution of the welding process
- Global R in agreement with our needs

Idea (inspired from Shigematsu): chemical etching followed by plasma etching + e-beam Au deposition (evaporation)

- Preliminary tests on a basic AI to Cu assembly:
- Different configurations tested (cf. article)

S. Triqueneaux *et al., Journ. Low Temp. Phys.* **203**, 345 (2021)

Contact resistance as low as $3 n\Omega$ at 4.2 K could be achieved

SUMMARY

Most of the contact resistances are validated

SUMMARY

Label	Туре	R (nΩ)	#	Notes
NDS to Cu wires	Brazed	5	2	Same as ini
Cu wires	Bulk	30	2	Same as ini
Cu wires to Cu block	Welded	5	2	Measured (~ 50 n Ω per weld)
Cu block (dismountable)	Bulk	2	2	Measured
Cu blocks connection	Pressed	5	2	Measured
Cu block (HS assembly)	Bulk	3	2	Measured
Cu block to Al heat HS	Pressed	1	2	Measured
AIHS	Bulk	1	2	Measured (3 n Ω equivalent R)
TOTAL		103 💊		

Relaxes some constraint on the wires NDS to wires contact R to be validated

Further step = HS combined to a single NDS:

Existing PrNi₅ stage (Parpia) PrNi₅ thermalized onto an Ag rod via cadmium soldering

Once mounted onto Andrew's (Bluefors) DR:

100 mK plate

NDS Coil

10 mK plate

NDS

1 mK plate

Thermal link

HS Coil

HS

Thermal link (not critical)

> **SQUID** Thermometer

neel.cnrs.fr

Power Supply (PS) has hudge parasitics at 0 current!

- Best case : ~23 hours with the SQUID therm. displaying T < 2 mK

Results:

Hypothesis: SQUID noise thermometer saturates at ~1.45mK

50nW heat applied to MFFT_18: Time axis is expanded by factor 12 for MFFT_18 MFFT_18 is adjusted downwards by 1,5mK to account for T offset caused by heat flow

Increase by a factor ~12 of total heat load when 50 nW heat is applied.
This would imply parasitics of ~4.5 nw (OK with previous publications)

Best case (23 hours) may suggest variable parasitics & as low as ~2 nW

neel.cnrs.fr

- Most of the thermal resistance issues are solved
- The heat switch has demonstrated very good performance, including with an NDS
- We believe that we have been able to reach below 800 µK on a PrNi₅ stage with 2-4 nW parasitics
- Still some optimizations needed: power supply, thermometry

We plan to focus our efforts on the design and manufacture of our own NDS

- Manufacturing issue for PrNi₅
- Thermal contact issue (Cd not very convenient)
- => Overall PrNi₅ to Cu thermal contact might become the bottleneck
- Al less efficient
- AI Cu contact should not be an issue
- Al not adapted to serial configuration

