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Chapter 1:
General concepts
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Part 3:
Quantum transport

Characteristic length scales

Electron wavelength A < 1 nm for metals:

(ke [ne]? h

Er = = AF =
F= 2m = 2m P J2mEr

Electron elastic mean free path in a diffusive metal: |, = 10-100 nm

Phase coherence length: L, = 1-10 pm at low temperature
Inelastic scattering length: L;, = L = 1-10 ym at low temperature

Sample size: L =10 nm — 10 ym



Mesoscopic, microscopic, macroscopic

Macroscopic: usually considered in the thermodynamic limit N — o0,V — o

Microscopic: discrete spectrum of energy levels, concept of impurity
ensemble breaks down, discreteness of electric charge and magnetic flux,
ballistic transport, coherent motion of electrons.

Mesoscopic: system size is intermediate, small enough so that phase
coherence is preserved.

Example: a 1 um?2 x 30 nm metal island has about 10 billions electrons, but
removing one makes a difference.

A mesoscopic sample

A phase-coherent conductor of any kind:
metal, nanotube, molecule, graphene, 2DEG ...

Connected to reservoirs with a well-defined chemical potential.

They are source of electrons at thermal equilibrium energy distribution.
Dissipation occurs in the reservoirs.

reservoir 1 reservoir 2
1}32——%;
c =

In practice a rather massive (wide and/or thick) electrode is enough.

The Thouless energy

Sample length: L =Dt 2 [7
Time taken to travel: T= IE) /\'32_177/

Related energy through uncertainty relation: 4| L L
hnD
Eth ="
L nD
Macroscopic regime: Ey, < kgT L>Lt= ——=
Mesocopic regime: E,, > kgT: 2nkgT

Ifl,=30 nmin Cu, D =150 cm?%s, Ly =0.2umat 1 K, E;, =4 peV forL=1 pm.

Meaning of Thouless energy:

Phase acquired during diffusion through the sample = E"':/
. h

If energy varies by E;,, phase changes by 21r.

Out-of-equilibrium energy distribution

A superconducting tunnel junction used for energy distribution spectroscopy.
Sample is normal, probe is superconducting:

+00
l o prrobe(E)[fprobe (E - eV) - 1Esample(E)]d :

Nprobe Calibrated at zero bias, f,qpe known.

fsample 1S €Xtracted from measured I(V).

A sharp DOS is needed for an accurate
determination.

FIG. 1. Experimental layout: a metallic wire of length L is
connected at its ends to reservoir electrodes, biased at potentials
0 and U. In the absence of interaction, the distribution function
at a distance X = xL from the grounded electrode has an
intermediate step f(E) = 1 — x for energies between —eU and
0 (solid curves) (we assume U > (). When interactions are
strong enough to thermalize electrons, the distribution function
is a Fermi function, with a space-dependent temperature and
electrochemical potential (dotted curves). In the experiment,
the distribution function is obtained from the differential
conductance dI/dV (V) of the tunnel junction formed by the
wire and a superconducting electrode placed underneath.

H. Pothier et al, Phys. Rev. Lett. 79, 3490 (1997).



Out-of-equilibrium energy distribution
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. 1 1 FIG.2. Inset of the top left panel: Measured dI/dV (V) of

%7 the tunnel juntion o wie 1 for U = 02 mV.. In the fou

N\ panels, distribution functions, obtained from the deconvolution

e —71 of such dI/dV(V) curves, for U =0, 0.1, and 02 mV in
\

//’ // - D ~ 65 cm?/s (wire 1, top left); in the middle of a 5-um-

- — P long wire with the same diffusion constant (wire 2, top right);

-eU 70 E -eU 0 E in the middle (bottom left) and at 1.1 xm from the grounded

reservoir electrode (bottom right) of a 5-xm-long wire (wire 3)

X X with D ~ 45 cm?/s. Also plotted as a dotted line in the top
left panel is the prediction for the noninteracting distribution

m
m

the middle of a 1.5-um-long wire with a diffusion constant

function [Eq. (2)] for U = 0.2 mV. All measurements were
performed at 25 mK. The cross-sectional area of the three
wires is nominally the same: 45 X 110 nm?. The tunnel
resistances of the junctions were Rr = 10k for wires 1
and 2, Ry = 200 k) for the middle junction on wire 3, and
Rr = 75 kQ for the side junction on wire 3

Tp=L?D Tp<Tint Tp>Tint

A. Anthore thesis.

1.2: The conductance quantization

Hot-electron regime

) . . K
Wiedemann-Franz law between electrlcal and thermal conductivities: — =(T
o

where L is the Lorentz number. = lkﬁ
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Assume local equilibrium: i dT dX—i E(,Tg dX = U= dX
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Electrons as fermions

Pauli principle: a state is occupied by one electron or empty.

Density of states in k space in 3D i

(27’

Energy distribution function f determined by statistics.

3
Expression for the current density: J= f2 d k (k).f(k)



Electrons as plane waves

VDZ ]

In vacuum: ‘P(F,t) J%exp(lkr—E )

In a ballistic conductor as a wave-guide:
1D free motion (x) + confinement in y,z directions

W n(Ft)= q)n(y,z)exp(ikx.x - Et)

13
Energy of the mode n:
2
(1) E

E=XL +E, 22
2m 3,1
2,2 2 2 21
. n°h n n '
with En= 5 y2+ 22 12

™ a(x)” b(x)

HereﬂS rgodgss are oogcuRied . 1,; o ‘Ekxz

Conductance of a quantum point contact

Net current = current of right-moving particules — current of left-moving ones.

For every channel: Y
Left Right
fdk L.Vy fIeft(k ) reservoir IJ\\ reservoir

J<_=2—n f dk ey (K Fright (Kx) J -
We have: v i J
19E 3 f/ © =
X" hoky “-o - Ll g
Let's consider that a limited number of channels is open: T=1.

2 2
=2 3 [ dEfer(E) - ight(E)] = 27 NopenV

channels

Adiabatic transport

A quantum point contact (QPC) = constriction in the mesoscopic regime:

E» e

Variation of dimension occurs on a scale large compared to width:

the usual approach can be used Iocallylz//%}/fﬁ \
72n? | n?

Ia=cste

En =
2 .
2m a(x) b(x) YZRN
/ AN
A reduced number (here 3) of channels ///\\\
is fully transmitted. - —
A transparency T is defined for every changel. B B . X

Conductance of a quantum point contact

2
One obtains: | = Z%Nopenv =2GqV

The conductance is quantized: G-= 2N0penGQ
Factor 2 due to spin.

The conductance quantum Gg, is

25.8kQ

The conductance is relevant here, not conductivity nor resistance or resistivity.
The conductance is finite even if the channel is ballistic: contact resistance.



Conductance quantization: experiment

Two-dimensionnal electron gas (2DEG) made from a GaAs-AlGaAs
heterostructure. A negative bias on a top gate depletes the gas.
First demonstration of conductance quantization:

B. J. van Wees et al, Phys. Rev. Lett. 60, 848 (1988).
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Conductance of a coherent conductor

Up to now, modes are either transmitted or reflected.

\
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1.3: Landauer formalism

Conductance of a coherent conductor

Some modes can be partially transmitted.
A conduction channel can be partially transmitted: 0 < T < 1.

N E )

H_E( eVi

fright



Conductance quantization : experiment Visualization of the
conductance channels

As a simple approach (not a demonstration), let us add a transmission:

|- 22331Ede-Tp(E)-[fleft(E)_fright(E)] _ 2GQETpV Scanning gate microscopy (SGM): b
p

p Atip is used as a local gate that depletes
locally a 2DEG.

2
Landauer-Bitiiker formula: G = Ez%Tp = 2GQETp

D D The resistance change measures the local

density of current.

A full demonstration includes a transmission matrix t. g5 = =06
The channels p considered above are then eigenstates of tft. YoM

Figure 1 Experimental set-up. a, Schematic diagram of the experimental set-up used for
imaging electron flow. The tip introduces a movable depletion region which scatters
electron waves flowing from the quantum point contact (QPC). An image of electron flow is

Restriction: only elastic processes are considered. No e-e interactions. obained by mesuring the effect the tip has on GPC conductance 25 a functon o ip
y p
. . . ition. Two ohmi 1t ~1 from the QPC (not sh llow the
Implies: low T, small dimensions, low voltage. _ Fondoctnes o e G5 1 e st g an .. ok it 1115 The
M. A. Toplnka et aI, Nature 410, 183 (2001 ) root-mean-square voltage across the QPC, 0.2mV, was chosen in order not to heat

electrons signif above the lattice of 1.7K. b, C of the QPC
used for Fig. 2b versus QPC width controlled by the gate voltage. Steps at integer
multiples of 26%/h are clearly visible. The inset is a topographic AFM image of the QPC.

Visualization Channel transmission in a metallic wire

conductance ¢

Conductance chamnnels can be defined in a mesoscopic wire as well.

. They are numerous, about 10% in a 100x100 nm?2.
Individual conductance

channels are observed. Dorotkov distribution of channel transparency.

P(T) o T 100 . T T T
Bi-modal distribution with mainly o
fully open or almost closed channels. =
egieZ]  esee— R 1
Figure 2 Experimental images of electron flow. a, Image of electron flow from one side of by A¢/2, half the Fermi wavelength, are seen to persist across the entire scan. b, Images 0 1 L - -
aQPCat T=1.7K, biased on the G = 2e%/h conductance step. Dark regions correspond  of electron flow from both sides of a different QPC, again biased on the G = 2¢%/h O N . DOrOkhOV et al El J ETP Lett 36: 31 8 (1 982) 0 02 04 06 08 1
to areas where the tip had little effect on QPC conductance, and hence are areas of low  conductance step. The gated region in the centre was not scanned. Strong channelling T

electron flow. The colour varies and the height in the scan increases with increasing and branching are again clearly visible. The white arrow points out one example of the
electron flow. Narrow branching channels of electron flow are visible, and fringes spaced  formation of a cusp downstream from a dip in the potential.



Chapter 2:
Quantum interference effects

Diffusion probabilities

AT LA,

Double-slit experiment: two possible paths from A to B.

Consider the quantum probability A, , for a particule to move from A to B.

Pass = A1+ Aol = A2 +[Agf + AAG + ATA

=P = *
1& / P, =2Re[A1A2]
classical

quantum

2.1: Universal Conductance
Fluctuations

Interference

Interference term can be positive or negative.
Pa—8 = Paiassical * 2y/PiP2 COS0¢

Electronic wavefunction:  W(x) = ¥y exp|i¢(x)] = ¥o exp|ik(x)x]

. . do
The phase spatial dependence is: =X =k(x)=./2mlE-V(x)|/A
ax = ¥(x)=+/2m[E-V(x]]/
Phase shift between the two trajectories 1 and 2:
gisorder = P1~ P2 = fk'dF - fk'dF
1 2

ddgisorder 1S related to the microscopic realization of the disorder:
depends on positions of the scattering centers.
Also on bias and electron density.



Universal Conductance Fluctuations (UCF):
experiment

The conductance fluctuates in a reproducible (universal) way, this is not noise.
Magnetic fingerprint of the disorder realization.
Symmetry relationship between measurements with different contact geometry.

R1423(B) =Ry314(-B) 10 j 2.2: Aharonov-Bohm effect
Fluctuations appear =
with amplitude of ~g
about G,: at most a é
one-channel
contribution is visible.
A. Benoit et al, Phys. Rev.
Lett. 57, 1765 (1986).
Aharonov-Bohm effect Aharonov-Bohm effect
Interference in multiply-connected conductors, like a ring.
A magnetic field creates a vector potential A. @l 10 x @,
. R = Contributions from every conduction
Phases to be calculated with k —k + %A(x) B® channel add with random phases.

G2 = f[R +eA}dF = fRdF + EfAdF A Oscillations appear with period h/e and .
12 h 12 h 12 amplitude of about G: at most a one-
’ ’ ’ channel contribution is visible.

e = e I
09 = §1 - 92 = ddgisorder + £¢A-dr = ddgisorder + %ff B.dS
S R.A. Webb et al, Phys. Rev. Lett. 54, 2696 (1985).

Phase difference related to flux in the loop, even with no flux in the conductor.

! I
(o] 100 200 300

e (O]
8¢ = ddgisorder + %q) = ddisorder * ZW(ITO h VAR [T

Flux quantum (e instead of 2e for a sc) e



2.3: Weak localization

Weak localization

Phase diff. between time-reversed paths, taking into account potential vector.

B B _op = 22 PAdT =¥ ([BdS = 4x5S

A 5® 0102 h¢ qno.g' "o
h

D = —

0 e

S: area enclosed by the flux.
The larger the field, the fewer loops contribute to constructive backscattering.

In a continuous media, the characteristic loop sizeis: S = L%p
Related characteristic magnetic field: B = h
2el?

Magnitude of about a conductance quantum.

Weak localization

Consider many different paths from A to B. B
Pa—B =Polassical + 2yPiP, COS ¢ <COS 5€P> =0

gisorder = 1= P2 = fk'dF - fk'dF =kby-kL,
1 2

Average = long wire
compared to L,

Phase ¢ is random: most contributions average out.

Consider special trajectories: from A to A, through B. B
In zero field, there is no phase difference: A

Ogisorder = P4~ P2 =0

A2 = A1

Amplitude of backscattering

2 2 2
Pa—g = ‘A1 + A2‘ = ‘A1 +A ‘ = 4‘A1‘ multiplied by 4: localization!

Weak localization
Coherent backscattering.

Called weak localization: small relative number of contributing closed loops.
To be distinguished from strong localization due to strong disorder.

Persists under ensemble average for example in a sample long compared to L,

Resistance expected to increase at small magnetic field.
Decays on the characteristic field B.



Weak localization: experiments

WL magnetoresistance of a metal wire at low temperature:
positive or negative depending on spin-orbit interaction.
Phase coherence time can be deduced.

F. Pierre et al, Phys. Rev. B 68, 085413 (2003).

(~)
J

ratio transformer.

P adl

AR/R

What is needed is a disordered media

Diffusion of light in a water with a suspension of polystirene spheres also
shows WL.

P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
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Measurement of a phase coherence time

Phase coherence time limited by:
phonons at intermediate temperature and
e-e interaction at the lowest temperature (a. T-1).

T, predicted to diverge at zero temperature.

Low temperature saturation can be observed
due to magnetic impurities.

F Ag(6N)C I Ag(5N)b
195K ~ 25K

AR/R

2.4: Aronov-Alshuler-Spivak
(AAS) oscillations



Weak localization

Phase diff. between time-reversed paths, taking into account potential vector.

B B
A ®

2e £+ .. 4= T B.S h
_py =28 A.dr=—ﬂB.dS=4 B> _h
d1-92 P gﬁ g J nq)o @

Period h/2e because two paths instead of one for UCF.

Ensemble average

Add N loops in series: ensemble average.
h/e AB effect vanishes, AAS oscillations
survive.

o)
h/2e WMV
H
iTo“R \ W o ST
V h/e 1078 ]
N=1
)

C. Umbach et al, Phys. Rev. Lett. 56, 386 (1986).

T

1 T T
fo 5] =
AAS h/2e
© 3
N& -.
2 ™ h/e
x10 OE 107k .
A o
Theory
‘C\\/
L (b) \‘\
1 i \\

%25 1 10 10

Aronov-Alshuler-Spivak oscillations

In a loop geometry:

Conductance effect of the order of

conductance quantum.

2
AG=E
h

Small relative amplitude when

conductance large.

2
AR ACG_e
g2 h

Minimum at zero magnetic field.

B. Pannetier et al, Phys. Rev. B 31, 3209 (1985).

R2

R(Q) N )
Cu 3%,
0.573827} T=133 mK l
4
0.573825 - 1
L 4
0.302681} ]
Au 3¢°
T=194 mK
0.302680| Here |
h
0= 452
. . 2e
-10 10 H(Ce)

Chapter 3:

Persistent currents



Electron states are periodic in flux

Let us consider a single 1D ballistic loop of radius R, with zero potential.

In cylindrical coordinates (r,6,¢), the Hamiltonian writes:

1 2 W10 i@ LD
H=amlP A = 2m|R 36 "R, P
Shrodinger eq.: HY =EW w(@ + 275) = w(e)
Let use a gauge . Ry - . D
transformation: v (6)=1p(6)exp %{Adl =w(8)exp(|306)
Shrodi tion: o '(6)=Ey’(6
rédinger equation: _2mR2 E«p( )_ w( )

equivalent to zero field case -> plane waves.

Energy spectrum

A 1D ballistic loop:

" omi2\ @

-1/2 /D, 1/2

Solution in a 1D ballistic case

1 .
Solutions w'n(ﬂ) =—exp[lxﬂ] + periodic limit condition:

J2n
oran-ule) = w(or2e)-wolers|-2n

0
Solutions to the Shrédinger equation are ¥, n is an integer

w'n(e)=ﬁexp[i(n+%)e]

2 2
h P
The eigenvalues ¢, are (L=21R): HY =E¥ m===) ¢n= 5 (n + )
2mL“\ Po

2 D
meaning that the wave-vectors are: kK = Ln(n + (I))
0

Persistent currents

For every energy level we can define an electron velocity: v, = 1% = E%
nhok e dp
o . L evp den
This gives a current for every occupied state: i, = L = _£

The total current is the sum of the contributions of all occupied states. At T=0:
N N
b Do
N = n=-— o
ad
n=0 n=0 ¢

Successive states carry an opposite current.

The order of magnitude of the circulating current is given by the last level.

This current is non-dissipative as it is related to the fundamental state.



Persistent current observation

Measurement of the persistent current in a single loop, of about 1 nA.

SQUID gradiometer: two loops in series with opposite direction, only the field
- Chapter 4.

difference is measured.
Noise in mesoscopic systems

D. Mailly et al, Phys. Rev. Lett. 70, 2020 (1993).
“The noise is the signal®, Rolf Landauer, Nature 392, 658 (1998).

h/e
24—y
e
R (Ohm), ¢ b —e—signal | |
P N\ —e— noise ‘
i A

[ \ [ e | hize
Ly
8| i \ 1
NN !
0l voeoRBeme,
0 4 8 12 16
frequency (h/4e)
FIG. 2. Square root of spectrum power of the resistance fluc- hHIGf’ I E:‘eclrpn micrl:)g;a!;h g the expcrimt(:nlal dCVic)e’ (On
tuations of the ring (mean resistance =1 kQ). Open circles the left is the ring etched in GaAs 2DEG (labeled | ‘.he
spond t ! al noise, i.c.. diff os b . dashed line has been added because of the poor contrast) with
correspon (?expgrlmenld noise, 1.e., differences between mea the two gates, (2) and (3). On the right is the calibration coil
surements with ring open. Solid circles correspond to experi- (4). On the top is the first level of the SQUID fabrication (5)
mental slgnu‘I, i.e., differences between measurements w1.th ring with the two microbridge junctions on the right. The picture
clos_cd and ring open. The two arrows indicate the position of has been taken before the second level of the SQUID fabrica-
period h/e and h/2e. tion.

Basic definitions

Current fluctuation: 6I(t) = I(t) -1
The auto-correlation function is: tp(t,r) = <6I(t)6l(t + 1:)>

In the stationary case, the spectral density of the current noise: 3 1 . Th :
.1: Thermal noise

S|(f) = 2} exp] 2infr |y(t)dr = 2y (f)

The variance is: <(6I)2> = w(r = 0) = ;j&(f)df = }S|(f)df

Last equality true when S(f) = S,(-f), i.e. vacuum fluctuations are negligible.



Nyquist noise

Consider two conductors connected through a transmission line of length L.

L

<
A conductor = a pure \_E) )J
resistor + a noise

voltage source o L@_

A equal power is exchanged between them: V2/4R

The noise delivered in a frequency interval d_oo is: dP = LSV (m)d—w
2w 4R 2n
It takes a time L/c for a photon to travel through the line.
o L dw
The energy density is then: dE=dP.t2=—S,, (w]—
2Rc v(©) 2
Nyquist noise
ne(o)
Noise density (in log scale): Ng(w)=4kgFm—p— s 5 .
\ haw/kgT

fiw
=CmE
B

Thermal cut-off at ho/kgT

Sy (@) =4R

At low frequency, one recovers the Johnson-Nyquist power density:
Sy (w)=4RkgT  inV2/Hz
The current noise is: S, = 4kBT/R in A2/Hz

Gives a practical voltage or current noise in V/\/Hz or A/\/Hz

Nyquist noise

The line is occupied by photon modes f,, = nc/2L.

The number of modes in the frequency interval d_(u is:
_du)/c_ do.L 2n VN=2¢_|X N
2n/ 2L mc
The mode occupancy is determined by the Bose-Einstein distribution function:
f(o) - ——

oo
B

The energy density is then:

dE= - ho do
C
exp| hw ~1
KgT L do
By comparing with the previous result dE = —S —— one obtains:
y comparing P 3R v (9)35

3.2: Shot noise



Shot noise

= bruit de grenaille = bruit de Schottky.
Basic example of the vacuum diode.
Electrons are emitted from filament to anode randomly.

The probability is constant = I/e, and |= Ne

Emission follows Poisson statistics (no correlation between emission times):

var(N) =N var() =var() & -N© 1
At NG
In terms of noise current density:
S)(f)=el
Usually a factor 2 appears if only positive frequencies are considered.

Measuring the shot noise is way to measure the charge of the carriers!

3.3: The tunnel junction limit

Measuring the charge of
carriers: experiment

S, (1022 A2 HzY)

Charge is carried by 2e units at a N-S
interface, due to Andreev reflection.

Noise measured is shot noise + thermal F'b
noise (visible at low bias).

Current noise, S (10-22 A2 Hz1)

18 . 1.27mv
| TR TS VN NS YT SN SR SN S S S S T |

X. Jehl et al, Nature 405, 50 (2000). 0 05 1 15 2
Current (mA)

The tunnel junction limit

Let us consider the tunnel junction case. The net current writes:

|_4lef\|v|\ (E-eV)Ng (E)[f(E) {1~ f(E-eV)} ~f(E-eV) {1-f(E)} |

)

The current includes a subtraction between direct current and counter-current.

In the noise, both currents contribute as 2el. The contributions are added:

5,(f=0)- Bno” f MPN, (E—eV)NB(E)[f(E){1—f(E—eV)};f(E—eV){Lf(E)}]dE

—00

eV
2kgT

exp( )+1
We can show that: S (V) = ZeWI(V) = 2eI(V)coth
exp| —— |-1
kgT




f(E){1—f(E—eV)}:f(E—eV){1—f(E)}

1 1- 1 1- 1
1+ exp % 1+exp E—eTV 1+ exp Ek_?_v) 1+exp %
B B B B
1 1 o[E+eV ], oo E-
1+exp % 1+ exp E-eV keT kgT
B B
exp i
kgT
= exp| — |1
E E-eV kgT
1+exp| —|||1+exp
kgT kgT
ex ev. +1
f(E){1-f(E-eV)}+f(E-ev){1-1(E)} PligT
f(E){1 B f(E B eV)} - f(E - eV){’I - f(E)} exp ev_ 1 D. Rogovin, D. Scalapino,
kgT Annals of Physics 86, 1 (1974).

A primary electronic thermometer based on
shot noise measurement

Crossover between shot noise and thermal noise.

L. Spietz et al, Science 300, 1929 (2003).

4kgT/e

Fig. 1. Theoretical plot of current spectral den-
sity of a tunnel junction (Eq. 3) as a function of
dc bias voltage. The diagonal dashed lines indi-
cate the shot noise limit, and the horizontal
dashed line indicates the Johnson noise limit.
The voltage span of the intersection of these
limits is 4kgT/e and is indicated by vertical
dashed lines. The bottom inset depicts the oc-
cupancies of the states in the electrodes in the
equilibrium case, and the top inset depicts the
out-of-equilibrium case where eV >> kgT.

Tunnel Junction

RF Amplifier Chain

Bandpass Filter,
Bandwidth B

Band = 300-600 MHz

RF Power
Meter

RF Power

Fig. 2. Apparatus used for measurement of junc-
tion noise. Inductively coupled leads block high
frequencies and allow the junction to be current-
biased with one pair of leads, whereas the voltage
is measured with the other pair of leads. Capaci-
tively coupled leads allow the noise to be mea-
sured simultaneously. The noise signal is ampli-
fied by a cryogenic high electron mobility tran-
sistor amplifier and a chain of rf amplifiers,
which provide about 70 dB of gain and a noise
temperature of 10 K. The output of this chain is
measured by a Schottky diode, which converts
noise power to a dc voltage. Voltages are read
out on digital volt meters (DVMs).
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Fig. 3. Normalized junction noise plotted versus
normalized voltage at various temperatures.
Noise power is normalized to the zero bias ( John-
son) noise, and bias voltage is scaled relative to
temperature. In these units, the data follow the
universal function xcoth(x), depicted by the solid
line. The residuals have the indicated fractional
standard deviations and are shown below. This
plot shows that the “gas law” for the junction
noise is obeyed over four decades in temperature,
with a significant systematic effect at the room
temperature. Error bars indicate stated approxi-
mate SD of residuals.

0.2%

The tunnel junction limit

eV

B
In the limit of a zero bias, one recovers the Johnson-Nyquist noise:

s,(V)- 2e|% - 4k T/R
25T
In the limit of a large bias, one obtains the shot noise:
S,(V)=2el

Let us consider a ohmic resistance: SI (V) = 2el.coth

3.2: Partition noise



Partition noise

I, particules are emitted by the reservoir during a time unit.
Probability T to have a particule transmitted.

The probability to have | particules through writes: P|0 (I) = C:O T'(‘I - T)lo_I

The mean currentis: | = EP(IO)E P|0 (I)I = EP(IO)TIO = TB Zzteun;ﬁy
lo [ lo

obvious

Here we have used: (a + b)n = ECBapbn_p

P
i(a + b)n =n(a+ b)n_1 = EpCBap'1b”'p = ;EpCBapb”‘p

da
witha=T,b=1-Tandn=1,, P P
(10 =1y - %Ec:OT' (1-T)071- %EP,O (I
lo lo

Partition noise

We obtained the shot noise of a single conductance channel:

2202 Tl T
AFF =T AI0+T(1 T)l0 Charge & o

. included here
Noise of the source

transmitted by the channel Partition noise

Assume a noise-free emitter: Al = T(1 - T)B = (1 - T)T

In the limit T small, one recovers the shot noise: AI2 o |

In the case of multiple channels: AP - ETp(1 - Tp)B B
p — ST(1-To)lo

AF _p

I

The reduction factor is the Fano factor: F = =+ 0
>Tolo
p
p

Partition noise

2 - Plio) ¥ R ()

2
;az(a +b)" =n(n-1)(a+b)" % = ¥ p(p-1)Cha’ %7
p

) -2
We consider the noise: AI2 = I2 —1
Let’s calculate the mean of I2:

Same trick:

lo(lo - 1) = T12[I2 —T] = 2 =T23+Tly(1-T)

2 - BP(o) > 2R () -

AR - T2 P(l0)8+ T(1-T) Y P(lo )l - T2),% - TZ[% -|02]+ T(1-T)o

Partition noise: experiment

A. Kumar, et al, Phys. Rev. Lett. 76, 2778 (1996).
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. o FIG. 4. Noise reduction factor vs the conductance for H = 0
FIG. 1. (a) Schematic measurement circuit. (b) _QPC conduc- (filled triangles) and H = 0.23 T (open triangles). Predictions
tance vs gate voltage for H = 0. The black points show the  for no mode mixing without (dotted curve) and with (dashed

values of G and gate voltage where noise is studied. curve) the calculable heating effects for H = 0.






