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Fig. 2. Spectral properties. (A) The energy spectrum for W/V = 0.66 as a function of φwith periodic boundary conditions. The color intensity is proportional
to the density of states (DOS). The dashed and dotted lines are obtained from the resolvent inequalities Eq. 4, and correspond to states with F+ = 1 and
F− = 1, respectively (Fig. 3D). Their color coding follows that of Fig. 3C. The vertical line φ= 1.3 indicates the parameters chosen for B–D. (B) The color bar
shows the participation ratio p = (

P
i |ψi|2)2/N|ψi|4 for periodic boundary conditions, a measure of localization that indicates the ratio of sites contributing

to the density of states within a given energy bin. The height of the histogram is proportional to the density of states. (C) The local density of states with
open boundary conditions for an in-gap state at 2/3 filling indicated by the black line in B, showing the edge support of in-gap states. (D) The local Chern
marker density c(r) at 2/3 filling, quantized to C =−1 in the bulk, with a large and positive edge contribution, typical of a Chern insulating phase. The white
dashed square shows the averaging region used to compute Fig. 3A.

general criteria above, we can determine the band edges and
spectral gaps through the inequality

∣∣∣∣E − 2V cos

(
φ+m

2π

3

)∣∣∣∣< |W |, [4]

with m = 0,±1. As discussed later, the different values of m
label the C3 rotation eigenstates of HV (see also SI Appendix,
section D).

In Fig. 2A, we compare the energy spectrum as a function of
φ calculated numerically using periodic boundary conditions and
the Kernel Polynomial Method (33), with the spectrum outlined
by the inequalities Eq. 4. The lines set by Eq. 4 match exactly
with the band edges of the numerical spectrum. The agreement
confirms Weaire and Thorpe’s original expectation: The local
environment of a site is enough to determine the broad spec-
tral features, and where the gap closures appear (28). Our goal
is to show that these properties also allow us to determine the
topological phase diagram.

To do so, we first show that the model can be, indeed, topolog-
ically nontrivial and discuss some of its physical properties. With
open boundary conditions, we observe that states appear within
bulk gaps for certain values of parameters. A typical local den-
sity of states of these in-gap states is shown in Fig. 2C. The wave
functions of these states are localized at the edge, suggestive of a
topological edge mode.

To map the topological phase diagram, and predict physical
properties, we have calculated the local Chern marker C(r) at
each lattice site r for different parameter values. The local Chern
marker can be regarded as the real space counterpartof the Berry

curvature (30, 34). It is defined at each site as the expectation
value (SI Appendix, section A)

C(r) = 2πIm 〈r|
[
Q̂x̂ , P̂ ŷ

]
|r〉 , [5]

over localized states |r〉, where P̂ and Q̂ are projectors onto the
occupied and unoccupied eigenstates.

With periodic boundary conditions, and for a 2D insulator, the
density of the local Chern marker is equal to the total Chern
number, C = Tr[C(r)]/Asys, where Asys is the area of the system
(30, 34). With open boundary conditions, Tr[C(r)] = 0, since it is
the trace of a commutator in a finite Hilbert space (34–36). In
an atomic insulator, C(r) is zero on all r, resulting in a vanishing
trace over all sites. In contrast, when the Chern number is finite,
the area-averaged C(r) in the bulk takes an integer value that
equals C , which is compensated exactly by an edge contribution
of opposite sign upon averaging over all sites. The local Chern
marker thus serves to diagnose topology of 2D insulators without
time-reversal symmetry.

Using the Chern marker, we can compute the topological
phase diagram, shown in Fig. 3A, for the representative case of
2/3 filling. It features three phases with Chern numbers C =
0,±1, shown for φ∈ [0,π], since C (φ) =−C (−φ). To visualize
quantization in Fig. 2D, we plot the dimensionless local Chern
marker density (34) c(r) within the topological state with C =−1
at φ= 1.3. By definition (SI Appendix, section A), c(r) coincides
with the density of C(r), on average, converging to C upon sum-
ming over bulk sites. The edge state contribution, with opposite
sign, is clearly visible.

The local Chern marker is a tool to elucidate the topolog-
ical phase diagram of this model, but is also connected to
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Fig. 3. Topological phase diagram and symmetry properties of the z = 3 Weaire–Thorpe model at ν= 2/3 filling. (A) Topological phase diagram obtained
from the local Chern marker density averaged over the area within the dashed white square in Fig. 2D, 〈c(r)〉bulk. The solid lines indicate the gap closing
transitions obtained using the inequalities Eq. 4. The vertical dashed line indicates φ= 1.3, used in C and D. (B) Topological phase diagram using the
symmetry indicator formula Eq. 6. (C) Spectral densities Fm(E). We use an RGB color value to visualize how a given eigenstate transforms under C3 rotations
(see Symmetry Indicators and Topological Invariants). The dotted lines show the effective Hamiltonian spectrum at k = 0 for l = 0,±1 with the same color
coding. The gray dotted line indicates a 2/3 filling. The vertical dashed lines indicate W = 0, 2, W = 0, 3, W = 0, 4 used in E. The Lower Left schematic
shows the trivial decoupled triangle limit (W = 0). (D) Spectral densities F±(E). We use a two-color coding to visualize how a given eigenstate transforms
under bond inversion (see Symmetry Indicators and Topological Invariants). The Lower Right schematic shows the trivial dimer limit (V = 0). (E) Momentum
resolved spectral weights Fm(E, k) showing a band inversion at |k| ≡ k = 0. The eigenvalues of Heff(k) are shown as dark dotted lines. The red, green, and
blue colors correspond to m = 0, 1,−1 respectively. The continuum Chern number ν changes from ν= 0 to ν=−1 across the transition.
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physical properties. Firstly, the Hall conductivity σxy is deter-
mined by the Chern number, σxy =Ce2/h . Secondly, Tr[C(r)]
determines the absorption rate difference between driving the
system with left- and right-handed circularly polarized electric
field of amplitude E (35). This observation does not rely on
translational invariance, and thus our model should show a quan-
tized circular dichroism. By following ref. 35, we show that the
differential frequency-integrated absorption rate is quantized to
∆Γ/Asys =E2~2Tr[C (r))]/Asys =E2~2C (SI Appendix, section
A). A finite quantized circular dichroism can be measured even
for finite samples, upon integrating to frequencies up to the band
gap (36).

Symmetry Indicators and Topological Invariants. By construction,
the Weaire–Thorpe models impose that all orbitals are equiv-
alent. We show, next, how we can use the resulting underlying
symmetries, cyclic permutation of the orbitals on a site (2π/z
rotations) and bond inversion, to determine the topological
phase diagram. For concreteness, we consider the z = 3 case in
the following, but our conclusions carry over to the general case
with minimal modifications.

The properties of the eigenstates of HWT under rotations are
best understood starting from the trivial limit W = 0. In this
limit, Eq. 1 defines a set of decoupled triangles, each governed by
HV (Fig. 3C, Lower Left schematic). The system is topologically
trivial, since it is possible to form a basis of localized states (37,
38). Its spectrum consists of three bands with N /3 states each,
where N is the total number of orbitals in the system. There-
fore, fillings N /3 and 2N /3 define trivial insulators. Since HV is
invariant under 2π/3 rotations, the local site symmetry group is
C3. This implies that, at W = 0, all states are exact eigenstates
of C3, labeled by their rotation eigenvalues wm = e i2πm/3 with
m = 0,±1.

Crucially, the eigenstates of the Hamiltonian HWT at the band
edges determined by Eq. 4 remain eigenvectors of HV what-
ever the relative magnitude of V , W , and φ (see SI Appendix,
section D for an analytical derivation). For general states, we
characterize the transformation properties under threefold rota-
tions by computing Fm(|ψ〉) =

∑
i |〈i ,m|ψ〉|

2, the overlap with
the eigenvectors |i ,m〉 of HV localized on site i . With respect to
C3, |i , 0〉 transforms as an s-like orbital with eigenvalue w0 = 1,
while |i ,±1〉 transform as px ± ipy -like orbitals with eigenval-
ues w±1 = e±i2π/3. For any state, Fm ≥ 0 and

∑
m Fm = 1, so we

assign an RGB color code to visualize how it transforms under
C3 rotations (Fig. 3C). As advertised, states at the band edges
have Fm(|ψ〉) = 1 for some m and are exact C3 eigenstates.

Similarly, to understand the properties of the eigenstates of
HWT under inversion, we start from the V = 0 limit. When
V = 0, the system is a set of decoupled dimers (Fig. 3D, Lower
Right schematic). The energy spectrum is composed of two bands
at energies±W , with N /2 states each, labeled by±1 bond inver-
sion eigenvalues. At 1/2 filling, the system is a trivial insulator.
Analogous to our procedure above, we characterize the prop-
erties of any eigenstate under inversion away from V = 0 by
introducing |j ,±〉, the eigenvectors of HW localized on the dimer
j , and computing F±(|ψ〉) =

∑
j |〈j ,±|ψ〉|

2. As before, the band
edges remain eigenstates of HW whatever the relative magnitude
of V , W , and φ (SI Appendix, section D), which can be seen in
Fig. 3D.

Since band edges remain eigenvectors of HV and HW sepa-
rately, and these track band crossings, it is suggestive that, using
Eq. 4, we can track changes in Chern numbers. This would allow
mapping of a topological phase diagram analytically. To this end,
we take inspiration from the idea of symmetry indicators (21–
24) (see ref. 39 for a review), and extend those developed for
Chern insulators (40). Relevant to our analysis, the latter work
established, in particular, that, in 2D crystals with Cn rotational

symmetry, the Chern number can be determined modulo n by
multiplying rotation eigenvalues of filled states. This multipli-
cation amounts to summing the exponents, m p, of the filled
rotation eigenvalues of C3, as

∑
p . . .. We then observe that the

Chern number at a given point in the phase diagram can be
computed as

C (mod 3) =
∑

p∈filled

mp −
∑

p∈filled

mW=0
p . [6]

The second term in this expression acts as a reference for the triv-
ial state, which is well defined for 1/3 and 2/3 fillings, while the
first tracks band inversions. For 2/3 filling, the resulting phase
diagram is shown in Fig. 3B. It reproduces that computed from
the local Chern marker (Fig. 3A), yet its computation is analyt-
ical. A similar invariant can be found for z = 4 as shown in SI
Appendix, section F.

It is appealing to connect the success of the invariant Eq. 6 to
known topological invariants. First, Eq. 6 can be thought of as the
amorphous analogue of the Chern number equation formula for
crystals with C3 symmetry (40). Second, in continuous media, the
Chern number can be computed by subtracting angular momen-
tum eigenvalues l of filled states at |k| ≡ k = 0 and k =∞ (41,
42), by defining ν=

∑
n∈filled ln(k = 0)− ln(k =∞). The k =∞

term captures the short-distance properties, and thus it is sug-
gestive to interpret it as the second term in Eq. 6. Similarly, the
k = 0 term captures long-distance properties, and it is tempting
to identify it with the first term in Eq. 6. Although appealing, this
identification is subtle, because, even in crystals, further neigh-
bor hoppings can break the naive intuition that gap inversions
occur at k = 0. Therefore, establishing a formal correspondence
is an interesting open problem, yet the similarities between ν and
Eq. 6 and the average rotational symmetry of amorphous lattices
suggest that ν can be used to signal amorphous topological states.

To investigate this possibility, we extend a recent description
of topological quasicrystalline phases (31) to our amorphous lat-
tices. By projecting the real space Hamiltonian into a basis of
plane waves with a given k, we can define an effective Hamil-
tonian in momentum space, Heff(k) (31). Since this procedure
does not rely on translational symmetry, we define Heff(k) for
our amorphous system using a basis of angular momentum states
(SI Appendix, section E).

The symmetry properties of Heff(k) allow us to compute ν
and compare it to Eq. 6. As k = 0 and k =∞ are invariant
under continuous rotations, the eigenstates of Heff(k = 0) and
Heff(k =∞) can be labeled by their angular momentum l . The
colored dotted lines in Fig. 3C show the eigenstates of Heff(0)
labeled by m = l ∈ [−1, 0, 1], which closely follow the spectral
densities Fm(E). The l = 0 and l =−1 eigenvalues of Heff(0)
cross at the first topological phase transition, while the eigen-
values of Heff(∞) maintain the same ordering. This behavior
matches that of the momentum-resolved spectral densities of the
permutation eigenstates Fm(E , k) (Fig. 3E) which also present
a band inversion at k = 0 across the topological transition. For
general k, the eigenstates of Heff(k) disperse, but remain gapped
and continuous, establishing a connection to regularized contin-
uum Hamiltonians (41, 42). By explicitly computing the invariant
ν, that compares the number of filled angular momentum eigen-
states at k = 0 and∞, we can establish the topological character
of this band inversion, which changes ν= 0 to ν=−1. However,
we find that this approach only results in a meaningful Heff(k)
sufficiently close to the decoupled triangle limit W /V . 1, cap-
turing only part of the phase diagram (see SI Appendix, section E
for a discussion).

Discussion
We have proposed a class of realistic models with fixed coordina-
tion that allow analytical tracking of topological phase transitions
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in amorphous lattices. These models are motivated by the obser-
vation that the local environment of a site is similar in the
crystalline and amorphous lattices, the latter lacking long-range
order. A fixed coordination allows us to show that these mod-
els are generically gapped, and the equivalence between orbitals
allows us to assign a symmetry label to band edges. Treating these
labels as symmetry indicators, we have constructed the topo-
logical index (6), successfully reproducing the topological phase
diagram of a threefold Weaire–Thorpe–Chern insulator analyt-
ically. We have linked the phase diagram to physical responses,
predicting that 2D amorphous models with broken-time rever-
sal symmetry present a quantized circular dichroism, similar to
their crystal counterparts (35). The topological index (6) can be
defined for any z , signaling a way to determine the phase diagram
of any 2D Weaire–Thorpe model in the Altland–Zirnbauer class
A analytically. Since local topological markers are only defined
for topological classes with Z invariants (43, 44), our symme-
try indicators could serve as an alternative proxy of topological
phases.

Our results are a promising step to incorporate symmetries,
such as orbital equivalence or average rotational symmetry,
to classify amorphous topological states beyond the 10-fold
way. These could be combined with the effective Hamiltonian

approach (31) and with extra symmetries, such as time-reversal
or particle-hole symmetry, to answer the question of whether
new topological states, absent in crystals, can exist in amorphous
matter. One way that new phases can appear is by considering
local building blocks with symmetries absent in crystals, such as
C5 or C8 rotations. It is interesting to speculate whether these
symmetries could lead to unexpected quantum Hall transitions
in amorphous 2D magnetic materials. Lastly, our models admit
easy generalizations to higher dimensions and nonhermitian
couplings.

Our work establishes that, in the absence of translational
invariance, it is possible to construct topological models that
incorporate realistic elements, such as fixed coordination, and
for which the topological phase diagram can be computed ana-
lytically using symmetry, contrary to naive expectation. They are
therefore natural candidates to describe amorphous topological
states in the solid state (4), and they can serve as models for
synthetic systems, such as photonic Chern bands, where large
optical gaps can be realized using continuous random networks
(45, 46).

Data Availability. Code data have been deposited in Zenodo (DOI:
10.5281/zenodo.3741829).
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