Home page The Laboratory Research teams Theory for Nanosciences - ThNano

Theory for Nanosciences - ThNano

Properties such as superconductivity, electronic correlations and magnetism, quantum interferences and entanglement, widely studied in bulk materials, can be controled in great detail in nanostructures. The resulting behaviors, observable by electronic transport, are modelized with analytic and numerical techniques, when possible in contact with experiments in the lab. One goal is the understanding of novel emergent physical effects, another is their possible application in fully-functional quantum-based nanoelectronic devices.

Quantum coherence - CQ

Quantum coherence - CQ

Revealing quantum phenomena in electronic nano-circuits
Helium : from fundamental to applications - HELFA

Helium : from fundamental to applications - HELFA

Helium as model system, hydrodynamic and turbulence, space and astrophysics, instrumentation and cryogenic development.
Magnetism and Superconductivity - MagSup

Magnetism and Superconductivity - MagSup

Team Magnetism and Superconductivity at Institut NEEL - Systems involving charge, spin or lattice degrees of freedom.
Materials, nonlinear optics and plasmonics - MATONLP

Materials, nonlinear optics and plasmonics - MATONLP

a complete chain of competences that goes from the design and elaboration of new materials to the study of nonlinear optical properties and plasmonics
Materials, Radiations, Structure - MRS

Materials, Radiations, Structure - MRS

Understanding of the physico-chemical properties of complex materials based on the precise description of their structure
Micro and NanoMagnetism - MNM

Micro and NanoMagnetism - MNM

Complementary expertise in fabrication, characterisation, and simulations for studies in nanomagnetism with applications in spin electronics and micro-systems
Quantum Nano-Electronics and Spectroscopy - QNES

Quantum Nano-Electronics and Spectroscopy - QNES

Electron transport and local spectroscopy of quantum structures
Nano-Optics and Forces - NOF

Nano-Optics and Forces - NOF

Nano - optics and forces
Nanophysics and Semiconductors - NPSC

Nanophysics and Semiconductors - NPSC

Growth of III-V and II-VI semiconductor nanostructures and their physics in search of new functions for potential applications.
Nanospintronics and Molecular Transport - NanoSpin

Nanospintronics and Molecular Transport - NanoSpin

Studying magnetism at the nanoscale, where classical and quantum properties can be combined and used for molecular quantum spintronics
Wide bandgap semiconductors - SC2G

Wide bandgap semiconductors - SC2G

Physics of diamond and other wide bandgap semiconductors towards applications in electronics and biotechnologies
Surfaces, Interfaces and Nanostructures - SIN

Surfaces, Interfaces and Nanostructures - SIN

Experimental and theoretical studies of low dimensional systems
Hybrid Systems at low dimension - HYBRID

Hybrid Systems at low dimension - HYBRID

Electronic, optical, vibrational, mechanical properties, as well as their interplay at the nanoscale, of novel hybrid systems (nanotubes, graphene, two-dimensional and functionalized materials) which are developed by the group .
Condensed Matter Theory -TMC

Condensed Matter Theory -TMC

Novel physical phenomena in materials and model systems.
Thermodynamics and Biophysics of small systems - TPS

Thermodynamics and Biophysics of small systems - TPS

Ultra-sensitive instrumentation for electrical and thermal measurements: from biophysics to low temperature condensed matter physics.
Theory for Nanosciences - ThNano

Theory for Nanosciences - ThNano

Theoretical studies of electronic transport in nanometer-scale devices showing remarkable quantum effects.
Ultra-low temperatures - UBT

Ultra-low temperatures - UBT

Quantum physics at the ultra-low temperature frontier.
© Institut Néel 2012 l Webdesign chrisgaillard.com l Powered by spip l Last update Thursday 9 October 2014 l