Accueil du site Séminaires Séminaire MCBT

Séminaire MCBT

Mardi 5 avril à 11h00,
Salle Louis Weil, E424

Orateur : Valery Nesvizhevsky, GRANIT and GBAR collaborations (Institut Max von Laue)
"Neutron whispering gallery and Quantum gravitational spectroscopy"


Quantum gravitational spectroscopy with ultracold systems is an emerging field based on recent major experimental and theoretical advances . Gravitational spectroscopy profits from exceptional sensitivity due to the extreme weakness of gravitation compared to other fundamental interactions ; thus, it provides an access to the precision frontier in particle physics and other domains. Quantum gravitational spectroscopy is its ultimate limit addressing the most fragile and sensitive quantum states of ultracold particles and systems. Ultracold particles – neutrons, atoms, and antiatoms – with sufficiently high phase-space density are the condition for providing observable phenomena with gravitational quantum states. Some of such studies, like those with ultracold neutrons, have become reality [12] ; others with ultracold atoms and antiatoms are in preparation. GRANIT is a projects pushing forward the precision and sensitivity of quantum gravitational spectroscopy with ultracold neutrons [1]. Quantum states of antihydrogen atoms in GBAR are the key for pushing the precision of measurements of gravitational properties of antimatter [2]. These domains were recently discussed at GRANIT workshop and presented in a Special Issue [3]. They are analyzed in textbook [4]. We present status, recent advances in the field and closest prospects [5-11], and focus on the phenomenon of neutron whispering gallery, where centrifugal acceleration replaces gravity [13-15]. Precision measurements of neutron whispering gallery is a useful tool in particle physics and material science.

[1] D. Roulier, F. Vezzu, S. Baessler et al., Status of the GRANIT facility, Adv. High En. Phys. 730437 (2015).
[2] P. Perez, D. Banerijee, F. Biraben et al., The GBAR antimatter gravity experiment, Hyper. Inter. 233, 21 (2015).
[3] I. Antoniadis, S. Baessler, V.V. Nesvizhevsky, and G. Pignol, Quantum gravitational spectroscopy, Adv. High En. Phys. 467409 (2015).
[4] V.V. Nesvizhevsky, and A.Yu. Voronin, Surprising Quantum Bounces (Imperial College Press, London, UK (2015).
[5] S. Baessler, V.V. Nesvizhevsky, G. Pignol et al., Frequency shifts in gravitational resonance spectroscopy, Phys. Rev. D 91, 042006 (2015).
[6] G. Pignol, S. Baessler, V.V. Nesvizhevsky et al., Gravitational resonance spectroscopy with an oscillating magnetic field gradient in the GRANIT flow-through arrangement, Adv. High En. Phys. 628125 (2015).
[7] M. Escobar, F. Lamy, A.E. Meyerovich et al., Rough mirror as a quantum state selector : analysis and design, Adv. High En. Phys. 764182 (2015).
[8] G. Dufour, A. Gerardin, R. Guerout et al., Quantum reflection of antihydrogen from the Casimir potential above matter slabs, Phys. Rev. A 87, 012901 (2013).
[9] G. Dufour, A. Gerardin, A. Lambrecht et al., Quantum reflection of antihydrogen from nanoporous media, Phys. Rev. A 87, 022506 (2013).
[10] G. Dufour, P. Debu, A. Lambrecht et al., Shaping the distribution of vertical velocities of antihydrogen in GBAR, Europ. Phys. J. C 74, 2731 (2014).
[11] A.Yu. Voronin, V.V. Nesvizhevsky, O.D. Dalkarov et al., Resonance spectroscopy of gravitational states of antihydrogen, Hyper. Inter. 228, 133 (2014).
[12] V.V. Nesvizhevsky, H.G. Boerner, A.K. Petukhov et al., Quantum states of neutrons in the Earth’s gravitational field, Nature 415, 297 (2002).
[13] V.V. Nesvizhevsky, A.K. Petukhov, K.V. Protasov et al., Centrifugal quantum states of neutrons, Phys. Rev. A 78, 033616 (2008).
[14] V.V. Nesvizhevsky, A.Yu. Voronin, R. Cubitt et al., Neutron whispering gallery, Nature Phys. 6, 114 (2010).
[15] V.V. Nesvizhevsky, R. Cubitt, K.V. Protasov et al., The whispering gallery effect in neutron scattering

Dans la même rubrique

© Institut Néel 2012 l Webdesign l Propulsé par spip l Dernière mise à jour : Wednesday 10 June 2020 l