
Charge Puddles in Graphene near the Dirac Point

S. Samaddar,1,2 I. Yudhistira,3 S. Adam,3,4 H. Courtois,1,2 and C. B. Winkelmann1,2,*
1Université Grenoble Alpes, Institut NEEL, F-38042 Grenoble, France

2CNRS, Institut NEEL, F-38042 Grenoble, France
3Centre for Advanced 2D Materials and Department of Physics, National University of Singapore,

2 Science Drive 3, Singapore 117551, Singapore
4Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore

(Received 17 December 2015; published 23 March 2016)

The charge carrier density in graphene on a dielectric substrate such as SiO2 displays inhomogeneities,
the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles
are predicted to grow near charge neutrality, a markedly distinct property from conventional two-dimensional
electron gases. By performing scanning tunneling microscopy and spectroscopy on a mesoscopic graphene
device, we directly observe the puddles’ growth, both in spatial extent and in amplitude, as the Fermi level
approaches the Dirac point. Self-consistent screening theory provides a unified description of both the
macroscopic transport properties and the microscopically observed charge disorder.
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Electrons in graphene are subjected to a disordered
potential created by random charged impurities, either
adsorbed on the graphene or buried in the substrate.
These lead to inhomogeneities in the local carrier density,
that is, charge puddles [1–7]. Scanning probe microscopies
have, in particular, strongly contributed to unraveling
the puddles’ spatial properties and have challenged differ-
ent theories about their origin [1–3]. Charge puddles are
usually thought of as a limitation to the extent the charge
neutrality point can be approached macroscopically, there-
by also limiting possible device performances. However,
the behavior of the puddles themselves unveils the fasci-
nating electronic properties of graphene and, more gen-
erally, Dirac materials.
Electrostatic screening in two dimensions has a counter-

intuitive behavior. Thomas-Fermi screening entails a
characteristic length scale q−1TF. Unlike in three dimensions,
the Thomas-Fermi wave vector qTF in a 2D electron gas
(2DEG) is proportional to the density of states at the Fermi
level. As a consequence, qTF is energy and thus carrier
density independent in conventional 2DEGs, while qTF is
proportional to kF ¼

ffiffiffiffiffiffi
πn

p
in graphene and other Dirac

materials. This has the important consequence that the
unscreened potential created by a charged impurity in a
medium with dielectric constant κ, VðqÞ ¼ e2=2κϵ0q, and
the screened potential ~VðqÞ ∝ ðqþ qTFÞ−1 are identical
within a multiplicative constant [7]. In other words, near
charge neutrality local inhomogeneities in the screened
potential can be arbitrarily large. Further, a rough estimate
of the lateral extent of charge carrier density correlations is
given by q−1TF, from which a strong growth ∝ 1=

ffiffiffi
n

p
of the

puddles’ size is expected near charge neutrality. The carrier
density dependence of both the charge puddles’ amplitude
and size in a Dirac material has not yet been reported.

In this Letter, we report the direct microscopic obser-
vation of the doping disorder landscape in monolayer
graphene at different charge carrier densities. The charge
inhomogeneities are found to grow, both in spatial extent
and in amplitude, as the Fermi level approaches the Dirac
point. From transport measurements on the very same
graphene sample at study, the microscopic parameters of
the disorder potential can be estimated in the frame of the
self-consistent screening theory. Calculations of the charge
puddles’ distribution based on these are in very good
agreement with the experimental observations.
The sample is fabricated on a heavily doped Si substrate

covered with thermal oxide. Single layer graphene is
prepared by mechanical exfoliation [8]. The number of
graphene layers and the absence of surface contamination
are confirmed from combined optical, Raman, and ex situ
AFM characterization. Using a mechanical mask [9], we
deposit the metallic source and drain contacts to form a
4 μm long graphene junction [Fig. 1(a)]. Organic resist is
avoided, as to ensure a residue-free surface for scanning
probe microscopy. Details of the device fabrication are
described in the Supplemental Material [10].
The experimental setup is a homemade combined AFM-

STM operating at a temperature of 130 mK [21], at which
all measurements presented here were obtained. The sample
stage allows for in situmultiterminal transportmeasurements
of the device. AFM is performed by electrical excitation
and readout of a mechanical quartz length extension reso-
nator [22,23]. This allows us to rapidly move the tip to the
graphene junction with the help of the position code [24,25].
Scanning tunneling micrographs reveal a clean graphene
surface, following the substrate corrugationwith a roughness
of about 100 pm (see Supplemental Material file for
details [10]). Scanning tunneling spectroscopy is achieved
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by lock-in measurements of the differential tip-to-sample
tunneling conductance Gtðx; yÞ ¼ dIt=dVb, by adding a
12 mV ac modulation at frequency f ¼ 322 Hz to the bias
voltage Vb, which is uniformly applied to the sample.
Transport measurements are performed with the tip

retracted a few hundred nm from the sample surface.
However, approaching the tip to STM contact does not
produce a significant effect in the device characteristics.
The conductivity of the graphene device shows a perfectly
linear behavior at high carrier densities [Fig. 1(b)],

in line with a density-independent mobility of about
6000 cm2 V−1 s−1. This indicates that carrier transport is
dominated by long-range disorder, as can be caused by
random charge impurities in the substrate [26]. A slight
difference between the measured electron and hole
mobilities, μe=μh ¼ 0.9% 0.05, could be related to the
difference in their scattering cross sections off charged
impurities [5,27].
The gate voltage at which conductivity is minimized

gives the overall charge neutrality point, V0
g ¼ 29 V. This

overall hole doping is consistent with the presence of
negatively charged silanol groups on the surface. A residual
conductivity σ0 ≈ 11e2=h is found at the charge neutrality
point. Within self-consistent screening theory [7], the
above values of residual conductivity and mobility point
to a charged impurity distribution with a density ni ¼
7.5% 0.5 × 1011 cm−2 at a distance 0.1 < d < 1 nm below
the graphene, in agreement with earlier experiments in
similar conditions [5,6,26].
We performed scanning tunneling spectroscopy on

the graphene sheet, at distances greater than 1 μm from
the metal-graphene interface as to rule out any possible
influence of the leads on local properties. Figure 1(c) shows
the differential tunneling conductance GtðVbÞ acquired at a
given location, but at different gate voltages Vg. A V-shape
spectrum, characteristic of graphene, is obtained in every
case. A frequently reported gate-independent depression of
the tunneling conductance is seen at zero bias [21,28,29].
In addition, the curves display two gate-dependent local
minima, highlighted by red and black arrows, respectively,
which move in opposite directions with Vg.
The primary minimum V0

b (red arrows) occurs when the
Fermi level of the tip is aligned with the local Dirac point
EDðrÞ of graphene, which can be written as

V0
b ¼ −γsgnðVg − VD

g Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVg − VD

g j
q

; ð1Þ

where γ ¼ ℏvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πκϵ0=ðe3tÞ

p
employing a plate-capacitor

model, with vF ¼ 1.1 × 106 m=s the graphene Fermi
velocity, and t ¼ 285 nm and κ ¼ 3.9 the SiO2 thickness
and dielectric constant, respectively (details are described
in the Supplemental Material [10]). The local quantity VD

g

is the gate voltage at which the Fermi levels of both the
graphene and the tip are aligned with the Dirac point.
It includes the influence of the local gating produced by
the tip due to both the tip-sample work function mismatch
and the bias voltage [9,30]. In the absence of capacitive
coupling to the tip, the spatially averaged VD

g would
coincide with V0

g found from transport experiments. In the
case of Fig. 1, the experimental gate dependence of
the primary minimum V0

b can be well fitted with
Eq. (1), yielding VD

g ¼ 28 V [Fig. 1(d)], the value of γ
being determined by known parameters. The nearly exact
matching of VD

g at that particular position and tip
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FIG. 1. (a) Experimental configuration, combining transport
measurements with scanning probe microscopy on a monolayer
graphene device. A conductive tip mounted on a stiff mechanical
resonator serves as the probe for combined AFM-STM. Two
isolated electrical contacts (Source and Drain) enable two-probe
transport measurements. The atomic force micrograph shows
both the topography (vertical scale, varying between 0 and
57 nm) and the phase (varying by 3.8° from blue to brown).
(b) Device conductivity as a function of back-gate voltage Vg,
measured at a bias voltage of 5 mV. The overall charge neutrality
point is found at V0

g ¼ 29 V. (c) Differential tip-to-sample
tunneling conductance Gt as a function of the voltage Vb
(uniformly applied to the sample), at several values of Vg. The
red and black arrows indicate the position of the primary (V0

b)
and the secondary minimum of Gt, respectively (see text).
Isett ¼ 50 pA at Vb ¼ 0.9 V. The curves are vertically offset
for clarity. (d) Variation of the primary minimum with Vg. The
black dashed line shows the fit with Eq. (1), yielding the fit
parameter VD

g ¼ 28 V.
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condition with the global value of V0
g is coincidental, since

VD
g depends on the position. The secondary minimum

(black arrows in Fig. 1(c)) occurs when the Fermi level of
graphene passes through the Dirac point [9,29–31].
The above analysis provides a detailed understanding
of the electron tunneling spectra dependence on the gate
potential, at a given location.
Several strategies can be used for mapping the local

Dirac point. Performing a complete spectrum with an open
feedback loop at each position, from which ED is then
individually extracted, is the most reliable method, but it is
very time-consuming [2,21]. Mapping Gt with a closed
feedback loop set to a fixed set-point tunnel current Isett and
a single Vb that is slightly offset from the average primary
minimum V0

b by δVb was shown to reproduce qualitatively
the EDðx; yÞ maps [2]. This stems from the fact that, to first
approximation, a shift in ED simply shifts the GtðVbÞ
curves along the Vb axis. Complications with this approach
arise when onewishes to compare ED maps at different gate
voltages because V0

b itself is a function of Vg. Our strategy
consists of first determining V0

bðVgÞ at a given position
[Fig. 1(d)] and then mapping Gt at a gate-dependent bias
voltage VbðVgÞ¼V0

bðVgÞ%100mV. The sign of the offset
is set such that jVbj > jV0

bj.
We further normalize the differential tunnel conductance

maps to the set-point tunnel conductance, writing
~Gt ¼ ðVb=Isett ÞGt. This normalization is known to provide
a more faithful conversion of the differential tunnel
conductance to the density of states when the set-point
tunnel conductance is not fixed from map to map [32].
We have verified the structures observed in ~Gt maps to be
consistent with the ED maps found from full current
imaging tunneling spectroscopy (CITS) measurements,
which were acquired at selected gate voltages. These full
CITSs also allow for determining the proportionality factor
between the ~Gt and ED maps (see Supplemental Material
for a more detailed discussion [10]).
Experimental maps of the variations of ~Gt ∼ ED around

their spatially averaged value are shown for several gate
voltages in Fig. 2. It is readily seen that not only the lateral
extent, but also the amplitude of the doping inhomogene-
ities, gradually increase as the Fermi level approaches the
Dirac point. For proper quantification of the observed
inhomogeneities, we introduce the autocorrelation function
of the ED maps. Assuming rotational symmetry (which is
only approximately true, due to the finite size of the maps),
the latter is a function of only r ¼ jrj. The charge puddles’
size ξ is determined from fitting the angular average of the
autocorrelation function of each ED map to a Gaussian
decay. The gate dependence of ξ displayed in Fig. 3(a)
shows a strong increase near charge neutrality, which is
found at a gate voltage V̄D

g of about 38 V. This value is a
spatially averaged property of the map area. Because of the
capacitive influence of the tip [33], V̄D

g is somewhat larger

than the charge neutrality condition V0
g ¼ 29 V found from

transport experiments [9,30].
We further determine the standard deviation of the

Dirac point variations δED over a map. This quantity,
which reflects the amplitude of the doping inhomogene-
ities across the sample, is plotted in Fig. 3(b) as a function
of Vg and also shows a marked peak at V̄D

g ≈ 38 V.
The error bars on ξ and δED are mainly associated
with the finite size of the maps; a detailed discussion
of their determination can be found in the Supplemental
Material [10]. Some asymmetry of the puddles’ behavior
is observed, which appear somewhat larger and more
prominent at large electron doping, than on the hole doped
side. As electron doping involves a quite large gate
potential of about 60 V, a possible scenario for this
asymmetry is that the back gate eventually influences
the substrate impurities distribution itself [6].
Our main experimental findings are thus that both

the amplitude and the spatial extent of the puddles
significantly increase as the Fermi level approaches the
Dirac point. For a quantitative understanding, we now
compare these results to calculations. From Thomas-
Fermi theory in 2D, assuming a flat Fermi sea, follows
that variations in the local value of ED=e are equal to
variations in the screened electrostatic potential ~V [34].
For a random 2D distribution of charged impurities with
density ni at a distance d from the graphene sheet, the
autocorrelation function of the screened potential can be
written [35] as

55 V45 V37.5 V

27.5 V20 V-10 V(a) (b) (c)

(d) (e) (f)

ED - ED (meV) 
0 001001-

FIG. 2. Spatial maps of the variations of the local Dirac point
energy ED around its spatially averaged value ĒD, over an area of
100 × 100 nm2 at different gate voltages (indicated below each
figure). The imaging parameters for the original Gt maps (see
text) are Isett ¼ 50 pA and bias voltages Vb equal to (a) 0.298 V,
(b) 0.191 V (c) 0.122 V, (d) −0.145V, (e) −0.232V, and
(f) −0.267 V.
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CðrÞ ¼ 2πni

"
e2

4πϵ0κ

#
2
Z

þ∞

0
qdq

$
1

ϵðqÞ
e−qd

q

%
2

J0ðqrÞ; ð2Þ

where J0 is the zeroth-order Bessel function and ϵðqÞ is
the graphene dielectric function. The latter describes the
screening of Dirac fermions which, within random phase
approximation (RPA), can be written as [26]

ϵðqÞ ¼
&
1þ 4kFrs=q for q < 2kF
1þ πrs=2 for q > 2kF;

ð3Þ

where rs ¼ e2=ð4πϵ0κℏvFÞ ≈ 0.8 on SiO2 is the effective
fine structure constant of graphene. The dependence of the
correlation function on the mean doping level (and thus on
the gate potential) enters here through the dependence of
ϵðqÞ on 2kF.
We calculated the autocorrelation function for the

screened potential and extracted the correlation length ξ
and fluctuation amplitude δ ~V ¼ δED=e. The result for

d ¼ 1 nm, shown as dashed curves in Figs. 3(a) and 3(b),
accounts for the overall decrease of both ξ and δED, that is,
stronger screening with increasing charge carrier density.
The calculations have no other adjustable parameter
than V̄D

g ¼ 38 V, the impurity density in the substrate ni
being determined from the transport measurements. The
puddles’ size follows, in particular, the expected trend ξ ∼
q−1TF ∝ 1=

ffiffiffi
n

p
at high carrier densities, where n ∝ jVg − V̄D

g j
is the gate-induced charge carrier density. This agreement
validates the microscopic picture of random potential
fluctuations, for the description of which we call for
Thomas-Fermi screening in a Dirac material.
At charge neutrality, for a homogeneous system, there

are no excess charges available to screen the impurity
potential. Accordingly, Eq. (3) predicts that both the
amplitude and the correlation length diverge. However,
this ignores the fact that the induced charges within the
puddles can themselves screen the impurity potential.
Accounting for this process self-consistently [26] leads
to rewriting the RPA dielectric function of Eq. (3) with a
corrected charge carrier density. The usual expression of
kF ¼

ffiffiffiffiffiffi
πn

p
is then replaced by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðnþ n&Þ

p
[35], where n&

represents the disorder-induced residual charge carrier
density in the graphene sheet which cannot be compensated
by a global gate. The self-consistent calculations are plotted
in Figs. 3(a) and 3(b). The gray regions are delimited by
the theoretical curves for d ¼ 0.1 and 1 nm, respectively.
The ensuing saturation of both the puddles’ size and
amplitude at the charge neutrality point is in very good
agreement with the experimentally observed trend.
To conclude, this work provides the first microscopic

observation of the growth of charge inhomogeneities in
graphene near the Dirac point. It further shows that the
observed behavior can be very well described with a theory
based on a microscopic description of the impurity poten-
tial, using parameters found from transport measurements,
performed in situ on the very same graphene sample. This
observation gives utmost credit to the charged impurity
potential scenario as a limiting factor to the exploitability of
Dirac physics in graphene on SiO2 [10].
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