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SI Methods
Single crystals of FeSe were grown using chemical vapor transport
method based on the use of an eutectic mixture of AlC3/KCl as
described in refs. 9, 31. The two different single crystals mea-
sured were grown in Grenoble (SP208) and Kyoto (MK). The
structural transition temperatures were determined in situ by
monitoring the emergence of Rayleigh scattering by ortho-
rhombic domains yielding TS = 87 K and TS = 88.5 K for SP208
and MK, respectively (see below for details). These values are
in agreement with TS values extracted from transport measure-
ment (Fig. S9A, refs. 9, 31). The superconducting transition tem-
peratures Tc were measured using SQUID (superconducting
quantum interference device) magnetometry giving Tc = 8.5 K
(SP208) and Tc = 9.1 K (MK). Again, these Tc values confirm the
values extracted from transport measurements (Fig. S9A, refs. 9,
31). The crystals were cleaved and transferred to a close-cycle
cryostat in inert atmosphere to prevent surface degradation.
Polarization-resolved Raman experiments have been carried out

using aDPSS laser emitting at 2.33 eV. For low energy (< 500 cm−1)
measurements, a triple-grating spectrometer equipped with 1,800
grooves/mm gratings and a nitrogen-cooled CCD camera were
used. Measurements at higher energies, up to 2,000 cm−1, were
performed using a single-grating spectrometer with 600 grooves/mm
in combination with an ultrasteep edge filter (Semrock) to block
the stray light. Additional measurements were also performed
using the 2.54 eV line of an Ar-Kr Laser. The laser spot dimension
was ∼ 50 × 80 μm2. The typical laser power used was 8 mW, but
for spectra in the superconducting state laser power less than
0.2 mW was used. All temperatures were corrected for the esti-
mated laser heating (see below for details).
The B1g and B2g symmetries were obtained using perpendic-

ular incoming and outgoing photon polarizations at 45 degrees,
and along of the Fe–Fe bonds, respectively. When using parallel
incoming and outgoing photon polarizations at 45 degrees of the
Fe–Fe bonds, A1g + B2g symmetries are probed. The A1g com-
ponent can be isolated from the A1g + B2g spectra by subtracting
the B2g contribution obtained independently. A piezorotator was
used to change the orientation of the crystal in situ with respect
to the photon polarizations. To extract the symmetry-dependent
nematic susceptibility from the Raman response at finite frequency
using Kramers–Kronig relation, the responses were extrapolated
linearly from the lowest frequency measured (8–9 cm−1 depending
on the symmetry and sample) to zero frequency.

Laser Heating and Determination of TS
A clear manifestation of the structural transition is the appear-
ance of Rayleigh scattering at the surface of the crystal due to twin
domains formation at TS. This effect is easy to monitor using a
camera to visualize the laser spot during Raman experiments.
Moreover, it is very useful to estimate the actual value of TS, as
well as laser heating in situ.
To achieve this, we take pictures of the laser spot at different

temperatures for a given value of laser power PL (Fig. S1), then
integrate out the whole spot intensity and plot it as a function of
temperature (Fig. S2).
Fig. S1 shows images of the laser spot taken at different

temperatures on the SP208 sample, for a laser power of 0.5 mW.
These images show the onset of twin domains scattering at a
temperature TDS between 87.5 and 87.0 K. Because twin do-
mains scattering appears when the effective temperature equals
TS, the onset temperature TDS depends on the value of laser
heating.

Fig. S2 shows the temperature dependence of the integrated
intensity on SP208 at a laser power of 0.5 mW. It shows an order-
parameter-like behavior, which extrapolates at a temperature
Toff
DS,1 = 86.5 K. Note that the integrated intensity starts to be

nonzero at a temperature slightly above Ton
DS,1 = 87.5 K. This

behavior may be due to either the Gaussian tail of the laser spot,
for which the actual laser heating is lower than that measured
at the center of the laser spot, or to a slightly inhomogeneous
distribution of TS.
The same measurement was also performed for a higher laser

power of 5 mW. The order parameter fit gives Toff
DS,2 = 82.6 K.

Assuming the following linear relation between the three
quantities TS, Toff

DS, and HLðTSÞ:

TS   =  Toff
DS   + HLðTSÞ  ×  PL,

we can thus determine the actual TS of our sample and the
laser heating at transition HLðTSÞ. We deduce from our two
measurements:

�
TS  =  86.9  ±  0.4 K
HLðTSÞ  =  0.9 K=mW.

The same procedure was applied to sample MK yielding, within
error bars, the same estimation of laser heating, but a slightly
higher TS: TS = 88.5 ± 0.5 K. Knowing these quantities and
the temperature dependence of thermal conductivity κðTÞ, we
can compute an estimation of laser heating as a function of
temperature HLðTÞ using the method described in ref. 39.

Comparison with Co-Ba122
Although there is an apparent contrast between FeSe and other
Fe SC with respect to spin degrees of freedom, we show in Fig.
S3A that, when plotted as a function of T–T0, the temperature
dependence of the charge nematic susceptibility of FeSe is re-
markably similar to the one of electron doped Co-Ba122 (23).
However, the two systems differ in the magnitude of the splitting
between TS and T0, which in a simple Landau-type picture
measures the strength of the electron–lattice coupling (40). The
splitting is 70–80 K for FeSe, and it is less than 60 K in Co-Ba122
(40 K for undoped Ba122) indicating a larger electron–lattice
coupling energy in FeSe (Fig. S3B).

Link between CS, Y[110], and Nematic Susceptibility
Here we give details on the link between the Raman charge
nematic susceptibility, the shear modulus and Young’s modulus
along the [110] direction, as measured in 3-point bending mea-
surements (6).

Link between CS and Y[110].According to elasticity theory Y½110� can be
expressed as a function of the components of the elastic tensor as:

Y½110� = 4
�
1
CS

+
1
γ

�−1
. [S1]

Using the Voigt notation and the tetragonal (2 Fe) unit cell, the
shear modulus is given by CS=C66. The coefficient γ depends on
four other components: γ = C11

2 + C12
2 + C2

13
C33
. As in all Fe SC, CS is

the only soft component above TS. The other components have a
weak temperature dependence due to anharmonicity and can be
safely approximated as constants between 300 K and TS (29, 41).
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Sufficiently close to TS the behavior of Y½110� will therefore be
dominated by CS, which strongly softens: Y½110�

Y 0
½110�

≈ CS
C0
S
. However, this

approximation holds only very close TS, and far away from TS the
proportionality between the two quantities will not be verified.
This can be illustrated by assuming that CS follows a Curie–Weiss
dependence as observed in Co-Ba122:

CS =C0
S
T −TS

T −T0
. [S2]

Here, TS is the structural transition temperature and T0 can be
thought as the electronic nematic transition temperature in the
absence of coupling to the lattice. T0 can be identified as the
Curie–Weiss temperature extracted from Raman measurements
if only charge and lattice degrees of freedom are considered. It
is straightforward to compute the corresponding temperature
dependence of Y½110�:

Y½110� =
4C0

S

1+ α

T −TS

T −T1
, [S3]

where α= C0
S
γ and

T1 =
T0 + αTS

1+ α
. [S4]

The temperature dependence of Y½110� is still of Curie–Weiss type
but with a new characteristic temperature T1 ≠T0. In the limit
where α � 1 we have T1 ≈T0. This limit is however never
reached in Fe SC where α≈0.7 in Ba122 and α≈=1.5 in FeSe.
In general T1 will be bounded by T0 from below, and TS from
above: T0 <T1 <TS. The disagreement between CS and its esti-
mate from Y½110� will therefore be marginal when T0 and TS are
close like in Ba122 (about 40 K). However, in FeSe where
TS −T0 ∼ 70 K the difference is more significant, and the full
expression [S1] must be used. This is illustrated in Fig. S4 A
and B where the normalized temperature dependences of CS
and Y½110� are plotted for parameters relevant to Ba122 and FeSe,
respectively.

Simultaneous Scaling of CS and Y[110] with χ B1g . The comparison be-
tween the experimentally observed softening of Cs and the one
expected from the charge nematic susceptibility χB1g

was performed
using Eq. 2 of the main text with C0

s=105 (110) GPa for SP208
(MK) sample. The only free parameter was the electron–lattice
coupling λ and good agreement was found for each sample in the
temperature interval where CS was measured. The λ value used for
SP208 was 10% higher than for MK. Note that because χB1g

extracted from Raman measurements is only known in relative
units, we cannot access the absolute value of λ from the fits. Using
the same parameters, C0

S and λ, the associated softening of Y½110�
was then computed using Eq. S1 with γ = 70 GPa, as estimated
from both elastic constant measurements and ab initio calculations
(29, 42). As Y½110� is only known up to a constant prefactor, the data
were rescaled at 250 K (6).

Fits Using a Quasi-Elastic Peak and a Low Energy
Background
To quantify the temperature dependences of the two components
contributing to nematic fluctuations in FeSe, it is necessary to fit
Raman response data, especially the low-energy QEP. To achieve
this, we used the following general expression:

χ″ðω,TÞ= χQEP″ ðω,TÞ+ χb″ðω,TÞ, [S5]

where the QEP is modeled by a damped Lorentzian:

χQEP″ ðω,TÞ  =  A1ðTÞ ΓðTÞω
ω2   +   Γ2ðTÞ. [S6]

At low energy the broad peak χb″was modeled using a third-order
polynomial form with only odd powers in ω to guarantee causality.

χb″ðω,TÞ =  b1ðTÞω  +  b3ðTÞω3. [S7]

As is clear from Fig. 4A and Figs. S6A and S7A, Eq. S5 fits well
the Raman response data at low energy, up to at least 180  cm−1,
and at all temperatures, above and below TS. In particular, below
TS, the high energy peak is partially gapped (see also Fig. S5),
resulting in a change in parameter b3ðTÞ from negative values
above TS to positive values deep below TS.
Fig. 4B and Figs. S6B and S7B show the temperature dependences

of the inverse of the low energy contribution A1 and the high
energy contribution A2 to the nematic susceptibility. The quan-
tity A1ðTÞ at each temperature was extracted from the corre-
sponding fit using Eq. S6. The temperature dependences A1ðTÞ
for all samples were fitted between 95 and 150 K using a linear
form A−1

1 ðTÞ= a1ðT −TpÞ. The quantity A2ðTÞ was computed
using the following method: the low energy QEP fits were
subtracted from the full Raman responses (Fig. S5). The spectra
were then divided by frequency and integrated up to 2,000  cm−1.
Fig. 4C and Figs. S6C and S7C show the temperature de-

pendences of the line width Γ of the QEP, directly extracted
from fits of the Raman response using Eq. S5. The temperature
dependences ΓðTÞ were fitted between 95 and 150 K using a
linear form ΓðTÞ=Γ0ðT −TppÞ.
Fits Using Two Quasi-Elastic Peaks
As shown in Fig. S8A, we found that the data can also be well
fitted above TS with a sum of two QEPs, as expected from the
contributions of two intraband, Drude-like, terms:

χ″ðω,T >TSÞ  =  χQEP1
″ ðω,TÞ  +  χQEP2

″ ðω,TÞ [S8]

where

χQEP1,2
″ ðω,TÞ  =  A1,2ðTÞ Γ1,2ðTÞω

ω2 +Γ2
1,2ðTÞ

. [S9]

Fits using Eq. S8 are good up to 1,000 cm−1, strengthening our
interpretation that the brand peak arises from more incoherent in-
traband excitations. Note however, that because of the partial gap-
ping mentioned above, the two QEP analysis does not reproduce the
data satisfactorily below TS. Fig. S8B shows the temperature depen-
dences of the inverse of the two contributions to the nematic sus-
ceptibility, A1 and A2 extracted from the fits. Fig. S8C shows the
temperature dependences of the line widths Γ1 and Γ2 of QEP1
and QEP2, respectively. Both quantities show linear temperature
dependences, indicated by dashed and dotted lines, respectively.

QEP Line Width and Resistivity
In a random phase approximation picture of a d-wave Pomeranchuk
transition we expect the QEP amplitude A−1

1 ðTÞ to scale as r0ðTÞ.
Here, r0ðTÞ= ξ−2 ∝T −T0, where ξðTÞ is the nematic correlation
length and T0 the mean-field nematic transition temperature (25).
Experimentally Tp, the zero temperature intercept of A−1

1 ðTÞ (Tp ∼
25 K (± 15 K)), is indeed close to T0, as obtained from the global
Curie–Weiss fit of χB1g

. However, the zero temperature intercept of
the QEP line width Γ, Tpp, is significantly higher: Tpp ∼ 65 K (± 5 K).
Here we show that the shift between Tp and Tpp can be accounted

by the temperature dependence of the bare quasiparticle scattering
Γ0ðTÞ as measured by e.g., transport. In FeSe, and in contrast to e.g.,
BaFe2 As2, the resistivity is strongly temperature dependent above
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TS. Between TS and 200 K it show quasi-linear behavior with a
positive intercept on the temperature axis. Because ΓðTÞ∝Γ0(T)
r0ðTÞ, the temperature dependence of the QEP line width Γ will
contain contributions coming from both the quasiparticle scattering
rate Γ0ðTÞ and r0ðTÞ.
Assuming that Γ0ðTÞ is proportional to the resistivity, Γ0 ∝R,

we can extract the temperature dependence of r0(T) by dividing
the measurement of QEP line width Γ by the resistance R:

ΓðTÞ
RðTÞ∝ r0ðTÞ. [S10]

We have used the resistivity data on a crystal from the same batch
as SP208 (Fig. S9) to correct the temperature dependence of
Γ(T). Γ(T) and ΓðTÞ

RðTÞ, normalized at their 160 K values, are shown
in Fig. S9B. Although the temperature dependence of Γ(T) be-
tween TS and 150 K extrapolates linearly at Tpp ∼65 K, the
quantity ΓðTÞ

RðTÞ extrapolates at a lower temperature ∼ 15 K, now
much closer to the value of Tp extracted from the temperature
dependence of QEP amplitude A−1

1 . Taking into account the
temperature dependence of the scattering rate Γ0ðTÞ thus rec-
onciles the temperature dependences of A1(T) and Γ(T).

Fig. S1. Images of the laser spot at different temperatures, taken on an SP208 sample, for a laser power of 0.5 mW.
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Fig. S2. Integrated laser spot image intensity as a function of temperature, for sample SP208, at a laser power of 0.5 mW.
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Fig. S3. Theoretical Curie–Weiss temperature dependences of CS and Y½110� for different values of TS − T0 and α. A corresponds to parameters relevant for
BaFe2 As2 and B for FeSe. Values were rescaled at T = 2.7TS.

Fig. S4. (A) Comparison between the B1g charge nematic susceptibility of FeSe and Co doped BaFe2 As2 (23) plotted as a function of T–T0 where T0 is the Curie–Weiss
temperature of each sample. The arrows indicate the structural transition TS for each sample. (B) Electron–lattice coupling energy TS–T0 as a function of TS for FeSe
and Co-Ba122.
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Fig. S5. (A) Temperature dependence of the resistance R of FeSe SP208. (B) Temperature dependence of Γ(T) and ΓðTÞ
RðTÞ, normalized at their 160 K values on

FeSe SP208.

Fig. S6. (A) Low energy fits of the B1g response of sample MK at 2.33 eV (532  nm) using Eq. S5. (B) Temperature dependences of the inverse of the two
contributions to the nematic susceptibility, A1 and A2 (red triangles; same as in Fig. 4). The dashed line is a linear fit of A−1

1 between TS and 150  K. It crosses the x
axis at T* = 11  K. (C) Temperature dependence of the line width Γ of the QEP. The dashed line is a linear fit between TS and 150  K. It crosses the x axis at
T** = 66  K.

Fig. S7. (A) Low energy fits of the B1g response of sample SP208 at 2.54 eV (488  nm) using Eq. S5. (B) Temperature dependences of the inverse of the two
contributions to the nematic susceptibility, A1 and A2. The dashed line is a linear fit of A−1

1 between TS and 150  K. It crosses the x axis at T* = 39  K.
(C) Temperature dependence of the line width Γ of the QEP. The dashed line is a linear fit between TS and 150  K. It crosses the x axis at T** = 59  K.
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Fig. S8. (A) Low energy fits of the B1g response of sample SP208 at 2.33 eV (532  nm) using Eq. S8. Note that the energy range is wider than that of Fig. 4A and
Figs. S6A and S7A. (B) Temperature dependences of the inverse of the two contributions to the nematic susceptibility, A1 and A2. The dashed line is a linear fit
of A−1

1 between TS and 150  K. It crosses the x axis at T* =31  K. (C) Temperature dependences of the line widths Γ1 and Γ2 of the low and high energy QEPs,
respectively. The dashed and dotted lines are linear fits between TS and 150  K. The dashed line crosses the x axis at T** = 61  K.
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Fig. S9. High energy contribution to the B1g Raman response, with the low energy QEP component subtracted, of sample SP208 at 2.33 eV (532  nm) as a
function of temperature (A) above TS and (B) below TS.
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